論文の概要: SU-Net: Pose estimation network for non-cooperative spacecraft on-orbit
- arxiv url: http://arxiv.org/abs/2302.10602v2
- Date: Tue, 28 Mar 2023 09:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 18:30:37.782938
- Title: SU-Net: Pose estimation network for non-cooperative spacecraft on-orbit
- Title(参考訳): SU-Net:非協調宇宙船の軌道上での姿勢推定ネットワーク
- Authors: Hu Gao and Zhihui Li and Depeng Dang and Ning Wang and Jingfan Yang
- Abstract要約: 宇宙船のポーズ推定は、ランデブーやドッキング、破片の除去、軌道上の維持など、多くの軌道上の宇宙ミッションにおいて重要な役割を担っている。
衛星軌道上でのレーダ画像の特徴を分析し,Dense Residual U-shaped Network (DR-U-Net) と呼ばれる新しいディープラーニングニューラルネットワーク構造を提案し,画像の特徴を抽出する。
さらに, DR-U-Netに基づく新しいニューラルネットワーク,すなわち, 宇宙機U字型ネットワーク(SU-Net)を導入し, 非協調宇宙船のエンドツーエンドのポーズ推定を実現する。
- 参考スコア(独自算出の注目度): 8.671030148920009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spacecraft pose estimation plays a vital role in many on-orbit space
missions, such as rendezvous and docking, debris removal, and on-orbit
maintenance. At present, space images contain widely varying lighting
conditions, high contrast and low resolution, pose estimation of space objects
is more challenging than that of objects on earth. In this paper, we analyzing
the radar image characteristics of spacecraft on-orbit, then propose a new deep
learning neural Network structure named Dense Residual U-shaped Network
(DR-U-Net) to extract image features. We further introduce a novel neural
network based on DR-U-Net, namely Spacecraft U-shaped Network (SU-Net) to
achieve end-to-end pose estimation for non-cooperative spacecraft.
Specifically, the SU-Net first preprocess the image of non-cooperative
spacecraft, then transfer learning was used for pre-training. Subsequently, in
order to solve the problem of radar image blur and low ability of spacecraft
contour recognition, we add residual connection and dense connection to the
backbone network U-Net, and we named it DR-U-Net. In this way, the feature loss
and the complexity of the model is reduced, and the degradation of deep neural
network during training is avoided. Finally, a layer of feedforward neural
network is used for pose estimation of non-cooperative spacecraft on-orbit.
Experiments prove that the proposed method does not rely on the hand-made
object specific features, and the model has robust robustness, and the
calculation accuracy outperforms the state-of-the-art pose estimation methods.
The absolute error is 0.1557 to 0.4491 , the mean error is about 0.302 , and
the standard deviation is about 0.065 .
- Abstract(参考訳): 宇宙船のポーズ推定は、ランデブーやドッキング、残骸の除去、軌道上のメンテナンスなど、多くの軌道上の宇宙ミッションにおいて重要な役割を果たす。
現在、宇宙画像には様々な照明条件、高コントラスト、低解像度が含まれており、宇宙物体のポーズ推定は地球上の物体よりも難しい。
本稿では,衛星軌道上でのレーダ画像の特徴を解析し,Dense Residual U-shaped Network (DR-U-Net) と呼ばれる新しいディープラーニングニューラルネットワーク構造を提案する。
さらに, DR-U-Netに基づく新しいニューラルネットワーク,すなわち, 宇宙機U字型ネットワーク(SU-Net)を導入し, 非協調宇宙船のエンドツーエンドのポーズ推定を実現する。
具体的には、SU-Netはまず非協力宇宙船のイメージを前処理し、次に転送学習を事前訓練に使用した。
その後、レーダー画像のぼかしと宇宙船の輪郭認識能力の低さを解消するために、バックボーンネットワークU-Netに残差接続と密結合を加え、DR-U-Netと名付けた。
このようにして、モデルの特徴損失と複雑さを低減し、トレーニング中のディープニューラルネットワークの劣化を回避することができる。
最後に、非協調的な宇宙船の軌道上でのポーズ推定にフィードフォワードニューラルネットワークの層を用いる。
実験により,提案手法は手作りのオブジェクト特有の特徴に頼らず,頑健なロバスト性を持ち,計算精度は最先端のポーズ推定法より優れていることが示された。
絶対誤差は 0.1557 から 0.4491 であり、平均誤差は 0.302 であり、標準偏差は 0.065 である。
関連論文リスト
- Space Debris: Are Deep Learning-based Image Enhancements part of the
Solution? [9.117415383776695]
現在地球を周回している宇宙ゴミの量は、加速ペースで持続不可能なレベルに達している。
軌道定義された、登録された宇宙船と、ローグ/非活動的な宇宙物体の検知、追跡、識別、識別は、資産保護に不可欠である。
本研究の主な目的は、可視光スペクトルの単眼カメラで捉えた際の限界や画像アーチファクトを克服するために、ディープニューラルネットワーク(DNN)ソリューションの有効性を検討することである。
論文 参考訳(メタデータ) (2023-08-01T09:38:41Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - 3D Reconstruction of Non-cooperative Resident Space Objects using
Instant NGP-accelerated NeRF and D-NeRF [0.0]
この研究は、ニューラル放射場(NeRF)アルゴリズムの変動であるInstant NeRFとD-NeRFを軌道上のRSOをマッピングする問題に適応させる。
これらのアルゴリズムは、宇宙船モックアップの画像のデータセットを用いて、3次元再構成の品質とハードウェア要件を評価する。
論文 参考訳(メタデータ) (2023-01-22T05:26:08Z) - MTU-Net: Multi-level TransUNet for Space-based Infrared Tiny Ship
Detection [42.92798053154314]
我々は,48個の空間ベースの赤外線画像と17598ピクセルレベルの小型船舶アノテーションを用いた,宇宙ベースの小型船舶検出データセット(NUDT-SIRST-Sea)を開発した。
このような挑戦的な場面におけるこれらの小型船の極端な特性を考慮すると、本稿ではマルチレベルトランスUNet(MTU-Net)を提案する。
NUDT-SIRST-Seaデータセットによる実験結果から,MTU-Netは従来の深層学習に基づくSIRST法よりも検出率,誤警報率,結合上の交叉率の点で優れていた。
論文 参考訳(メタデータ) (2022-09-28T00:48:14Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
より優れた符号付き距離場を再構成するためのSN-Fittingを提案する。
SSNフィッティングは半署名の監督と損失に基づく領域サンプリング戦略で構成されている。
我々は,SSN-Fittingが,異なる設定下で最先端の性能を達成することを示す実験を行う。
論文 参考訳(メタデータ) (2022-06-14T09:40:17Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
本稿では,高速ポーズ推定のためのLR表現を用いた費用対効果ネットワークの設計パラダイムであるFasterPoseを提案する。
我々は,FasterPoseのトレーニング挙動について検討し,収束を加速する新しい回帰クロスエントロピー(RCE)損失関数を定式化する。
従来のポーズ推定ネットワークと比較すると,FLOPの58%が減少し,精度が1.3%向上した。
論文 参考訳(メタデータ) (2021-07-07T13:39:08Z) - LSPnet: A 2D Localization-oriented Spacecraft Pose Estimation Neural
Network [10.6872574091924]
本研究は,非協調宇宙船の姿勢を推定するために,畳み込みニューラルネットワーク(CNN)を用いた新しい手法を探索する。
他のアプローチとは対照的に、提案されたCNNは3D情報を必要とせずにポーズを直接取り消す。
この実験は、非協力的な宇宙船のポーズ推定における最先端技術とどのように競合するかを示す。
論文 参考訳(メタデータ) (2021-04-19T12:46:05Z) - Assistive Relative Pose Estimation for On-orbit Assembly using
Convolutional Neural Networks [0.0]
本稿では、畳み込みニューラルネットワークを利用して、カメラに対して関心のある物体の翻訳と回転を決定する。
アセンブリタスク用に設計されたシミュレーションフレームワークを使用して、修正CNNモデルをトレーニングするためのデータセットを生成する。
モデルが現在の特徴選択法に匹敵する性能を示し、従ってそれらと組み合わせてより信頼性の高い推定値を提供することができる。
論文 参考訳(メタデータ) (2020-01-29T02:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。