論文の概要: A Deep Learning-Based Fully Automated Pipeline for Regurgitant Mitral Valve Anatomy Analysis From 3D Echocardiography
- arxiv url: http://arxiv.org/abs/2302.10634v3
- Date: Fri, 20 Dec 2024 07:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 13:01:19.561541
- Title: A Deep Learning-Based Fully Automated Pipeline for Regurgitant Mitral Valve Anatomy Analysis From 3D Echocardiography
- Title(参考訳): 3次元心エコー図による人工僧帽弁解剖解析のためのディープラーニングに基づく完全自動パイプライン
- Authors: Riccardo Munafò, Simone Saitta, Giacomo Ingallina, Paolo Denti, Francesco Maisano, Eustachio Agricola, Alberto Redaelli, Emiliano Votta,
- Abstract要約: 開発したアプローチは、MVアンラスとリーフレットのマルチクラスセグメンテーションのためのU-Netアーキテクチャを備えた3次元マルチデコーダ残差畳み込みニューラルネットワーク(CNN)に依存している。
プロセス全体は最小限のユーザインタラクションを必要とし、約15秒を要する。
- 参考スコア(独自算出の注目度): 0.3387808070669509
- License:
- Abstract: Three-dimensional transesophageal echocardiography (3DTEE) is the recommended imaging technique for the assessment of mitral valve (MV) morphology and lesions in case of mitral regurgitation (MR) requiring surgical or transcatheter repair. Such assessment is key to thorough intervention planning and to intraprocedural guidance. However, it requires segmentation from 3DTEE images, which is timeconsuming, operator-dependent, and often merely qualitative. In the present work, a novel workflow to quantify the patient-specific MV geometry from 3DTEE is proposed. The developed approach relies on a 3D multi-decoder residual convolutional neural network (CNN) with a U-Net architecture for multi-class segmentation of MV annulus and leaflets. The CNN was trained and tested on a dataset comprising 55 3DTEE examinations of MR-affected patients. After training, the CNN is embedded into a fully automatic, and hence fully repeatable, pipeline that refines the predicted segmentation, detects MV anatomical landmarks and quantifies MV morphology. The trained 3D CNN achieves an average Dice score of $0.82 \pm 0.06$, mean surface distance of $0.43 \pm 0.14$ mm and 95% Hausdorff Distance (HD) of $3.57 \pm 1.56$ mm before segmentation refinement, outperforming a state-of-the-art baseline residual U-Net architecture, and provides an unprecedented multi-class segmentation of the annulus, anterior and posterior leaflet. The automatic 3D linear morphological measurements of the annulus and leaflets, specifically diameters and lengths, exhibit differences of less than 1.45 mm when compared to ground truth values. These measurements also demonstrate strong overall agreement with analyses conducted by semi-automated commercial software. The whole process requires minimal user interaction and requires approximately 15 seconds
- Abstract(参考訳): 3次元経食道心エコー法(3DTEE)は,僧帽弁の形態と病変を診断するために推奨される画像診断法である。
このような評価は、徹底的な介入計画と手続き内指導の鍵となる。
しかし、それは3DTEEイメージからのセグメンテーションを必要とし、それは時間がかかり、演算子に依存し、しばしば定性的である。
本研究では,3DTEEから患者固有のMV形状を定量化する新しいワークフローを提案する。
開発したアプローチは、MVアンラスとリーフレットのマルチクラスセグメンテーションのためのU-Netアーキテクチャを備えた3次元マルチデコーダ残差畳み込みニューラルネットワーク(CNN)に依存している。
CNNはMR患者55例の3DTEE検査を行った。
トレーニング後、CNNは完全に自動化され、したがって完全に再現可能なパイプラインに埋め込まれ、予測されたセグメンテーションを洗練し、MV解剖学的ランドマークを検出し、MV形態を定量化する。
トレーニングされた3D CNNは、平均Diceスコアが0.82 \pm 0.06$、平均表面距離が0.43 \pm 0.14$ mm、95% Hausdorff Distance (HD)が3.57 \pm 1.56$ mmであり、最先端のベースライン残差のU-Netアーキテクチャよりも優れており、アヌス、前葉および後葉の多クラスセグメンテーションを提供している。
アンラスとリーフレット(特に直径と長さ)の自動3次元線形形態計測は、地上の真理値と比較して1.45mm未満の差を示した。
これらの測定は、セミオートマチックな商用ソフトウェアによる分析と強い総合的な一致を示す。
プロセス全体は最小限のユーザインタラクションを必要とし、約15秒を必要とします。
関連論文リスト
- Towards Patient-Specific Surgical Planning for Bicuspid Aortic Valve Repair: Fully Automated Segmentation of the Aortic Valve in 4D CT [0.0732099897993399]
Bicuspid aortic valve(BAV)は先天性心不全の最も多い疾患であり、狭窄、逆流、大動脈症などの合併症の手術を必要とする可能性がある。
造影CT(Contrast-enhanced 4D Computed Tomography)はコントラストと空間分解能に優れた体積時間配列を生成する。
ディープラーニングベースの手法は、完全に自動化されたセグメンテーションが可能であるが、BAV固有のモデルは存在しない。
論文 参考訳(メタデータ) (2025-02-13T22:43:43Z) - Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-view 2D projections [1.8189671456038365]
放射線治療中に3次元臓器形状を再構成できるエンドツーエンドのグラフニューラルネットワークアーキテクチャを提案する。
提案モデルは、患者固有のテンプレートと、任意の投影角度でkV画像から抽出した深い特徴からメッシュ回帰を学習する。
総合的枠組みは, 合成呼吸運動のシナリオを定量的に検討し, 肝癌患者に対するフルスキャンで得られた内処理画像について質的に検討した。
論文 参考訳(メタデータ) (2024-07-09T09:07:18Z) - Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images [4.1448595037512925]
マルチクラスの心臓解剖学的メッシュを再構築できる新しい完全自動表面再構成パイプラインを提案する。
その鍵となるコンポーネントは、マルチクラスポイントクラウド補完ネットワーク(PCCN)である。
論文 参考訳(メタデータ) (2023-07-17T14:52:52Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Segmentation-free Estimation of Aortic Diameters from MRI Using Deep
Learning [2.231365407061881]
大動脈径の直接推定のための教師付き深層学習法を提案する。
提案手法では,3Dスキャンを入力とし,所定の位置で大動脈径を出力する3D+2D畳み込みニューラルネットワーク(CNN)を用いる。
全体として、3D+2D CNNは大動脈の位置によって2.2-2.4mmの平均的な絶対誤差を達成した。
論文 参考訳(メタデータ) (2020-09-09T18:28:00Z) - Multi-modal segmentation of 3D brain scans using neural networks [0.0]
深部畳み込みニューラルネットワークは、3D MRI(MPRAGE, DWI, FLAIR)とCTスキャンのセグメンテーションのために訓練される。
セグメンテーションの質は、合計27の解剖学的構造に対してディース計量を用いて定量化される。
論文 参考訳(メタデータ) (2020-08-11T09:13:54Z) - Deep Negative Volume Segmentation [60.44793799306154]
対象物を取り囲むすべての組織間で空の空間を分割する3Dセグメント化タスクに対する新しい角度を提案する。
我々のアプローチは骨分割のためのV-Netを含むエンドツーエンドパイプラインである。
顎顔面領域の専門医が注釈を付した50名の患者データセットにおけるCTスキャンの考え方を検証した。
論文 参考訳(メタデータ) (2020-06-22T16:55:23Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。