論文の概要: Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images
- arxiv url: http://arxiv.org/abs/2307.08535v2
- Date: Tue, 18 Jul 2023 14:11:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 11:21:58.135276
- Title: Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images
- Title(参考訳): 磁気共鳴画像を用いた3次元心臓解剖再構成のためのマルチクラスポイントクラウド補完ネットワーク
- Authors: Marcel Beetz, Abhirup Banerjee, Julius Ossenberg-Engels, Vicente Grau
- Abstract要約: マルチクラスの心臓解剖学的メッシュを再構築できる新しい完全自動表面再構成パイプラインを提案する。
その鍵となるコンポーネントは、マルチクラスポイントクラウド補完ネットワーク(PCCN)である。
- 参考スコア(独自算出の注目度): 4.1448595037512925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cine magnetic resonance imaging (MRI) is the current gold standard for the
assessment of cardiac anatomy and function. However, it typically only acquires
a set of two-dimensional (2D) slices of the underlying three-dimensional (3D)
anatomy of the heart, thus limiting the understanding and analysis of both
healthy and pathological cardiac morphology and physiology. In this paper, we
propose a novel fully automatic surface reconstruction pipeline capable of
reconstructing multi-class 3D cardiac anatomy meshes from raw cine MRI
acquisitions. Its key component is a multi-class point cloud completion network
(PCCN) capable of correcting both the sparsity and misalignment issues of the
3D reconstruction task in a unified model. We first evaluate the PCCN on a
large synthetic dataset of biventricular anatomies and observe Chamfer
distances between reconstructed and gold standard anatomies below or similar to
the underlying image resolution for multiple levels of slice misalignment.
Furthermore, we find a reduction in reconstruction error compared to a
benchmark 3D U-Net by 32% and 24% in terms of Hausdorff distance and mean
surface distance, respectively. We then apply the PCCN as part of our automated
reconstruction pipeline to 1000 subjects from the UK Biobank study in a
cross-domain transfer setting and demonstrate its ability to reconstruct
accurate and topologically plausible biventricular heart meshes with clinical
metrics comparable to the previous literature. Finally, we investigate the
robustness of our proposed approach and observe its capacity to successfully
handle multiple common outlier conditions.
- Abstract(参考訳): 心臓の解剖と機能を評価するための現在の金の基準は、シン磁気共鳴イメージング(MRI)である。
しかし、通常は心臓の三次元(3d)解剖学の2次元(2d)スライスのセットのみを取得し、健康的および病理学的な心臓形態と生理学の理解と分析を制限している。
本稿では, 原位置MRIによるマルチクラス心筋解剖学的メッシュの再構築が可能な, 完全自動表面再構成パイプラインを提案する。
その鍵となるコンポーネントは、統一されたモデルで3D再構成タスクの疎度と不整合の問題を修正できるマルチクラスポイントクラウド補完ネットワーク(PCCN)である。
両心室解剖の大規模合成データセットを用いてPCCNをまず評価し, 複数レベルのスライスミスアライメントに対する画像分解能と類似した下層および金標準解剖とのチャムファー距離を観察した。
さらに, ベンチマーク3d u-netと比較して, ハウスドルフ距離と平均表面距離において, 再構成誤差が32%, 24%減少した。
次に, 英国バイオバンク研究から得られた1000名の被験者に対して, pccnを自動再建パイプラインの一部として適用し, 従来の文献に匹敵する臨床指標を用いて, 正確に, 位相的に有望な両室型心臓メッシュを再構築する能力を示す。
最後に,提案手法のロバスト性を調査し,複数の共通異常条件をうまく処理する能力を観察した。
関連論文リスト
- Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - A Quantitative Evaluation of Dense 3D Reconstruction of Sinus Anatomy
from Monocular Endoscopic Video [8.32570164101507]
内視鏡的シーケンスと光学的トラッキングを用いた洞再建のための自己教師型アプローチの定量的解析を行った。
以上の結果から, 生成した復元は解剖学的に高い一致を示し, 平均点間誤差は0.91mmであった。
ポーズと深さ推定の不正確さがこの誤りに等しく寄与し、より短い軌跡を持つ局所的に一貫したシーケンスがより正確な再構成をもたらすことを確認した。
論文 参考訳(メタデータ) (2023-10-22T17:11:40Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
論文 参考訳(メタデータ) (2023-08-16T17:07:40Z) - Modeling 3D cardiac contraction and relaxation with point cloud
deformation networks [4.65840670565844]
本稿では,3次元心収縮と緩和をモデル化する新しい幾何学的深層学習手法として,ポイントクラウド変形ネットワーク(PCD-Net)を提案する。
英国バイオバンクの調査から,1万件以上の症例の大規模データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-07-20T14:56:29Z) - Transformer-based Dual-domain Network for Few-view Dedicated Cardiac
SPECT Image Reconstructions [8.510419245628983]
高品質な3次元心筋SPECT画像再構成のための新しい3次元トランスフォーマーベースデュアルドメインネットワークTIP-Netを提案する。
本手法は,3次元心筋SPECT画像を直接投影データから再構成することを目的としている。
論文 参考訳(メタデータ) (2023-07-18T20:39:14Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
本研究では,ボリュームCTとMR画像データから心表面メッシュ全体を直接予測する深層学習に基づく新しい手法を提案する。
本手法は,高分解能,高品質の全心臓再建を実現できる有望な性能を示した。
論文 参考訳(メタデータ) (2021-02-16T00:39:43Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。