論文の概要: BrackishMOT: The Brackish Multi-Object Tracking Dataset
- arxiv url: http://arxiv.org/abs/2302.10645v1
- Date: Tue, 21 Feb 2023 13:02:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 15:22:18.106201
- Title: BrackishMOT: The Brackish Multi-Object Tracking Dataset
- Title(参考訳): brackishmot:brackishのマルチオブジェクト追跡データセット
- Authors: Malte Pedersen, Daniel Lehotsk\'y, Ivan Nikolov, and Thomas B.
Moeslund
- Abstract要約: 濁った環境で捕獲された水中マルチオブジェクト追跡(MOT)データセットは公開されていない。
BrackishMOTは、野生で捕獲された98のシークエンスから構成される。新しいデータセットに加えて、最先端のトラッカーをトレーニングしてベースライン結果を示す。
トレーニング中に合成データを含めることの効果を分析し,実際の水中トレーニングデータと合成水中トレーニングデータを組み合わせることで,追跡性能が向上することを示した。
- 参考スコア(独自算出の注目度): 20.52569822945148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There exist no publicly available annotated underwater multi-object tracking
(MOT) datasets captured in turbid environments. To remedy this we propose the
BrackishMOT dataset with focus on tracking schools of small fish, which is a
notoriously difficult MOT task. BrackishMOT consists of 98 sequences captured
in the wild. Alongside the novel dataset, we present baseline results by
training a state-of-the-art tracker. Additionally, we propose a framework for
creating synthetic sequences in order to expand the dataset. The framework
consists of animated fish models and realistic underwater environments. We
analyse the effects of including synthetic data during training and show that a
combination of real and synthetic underwater training data can enhance tracking
performance. Links to code and data can be found at
https://www.vap.aau.dk/brackishmot
- Abstract(参考訳): 濁った環境で捕獲された水中マルチオブジェクト追跡(MOT)データセットは公開されていない。
そこで本研究では,小型魚の学校追跡に着目したBrackishMOTデータセットを提案する。
BrackishMOTは、野生で捕獲された98の配列からなる。
新たなデータセットに加えて,最先端トラッカーのトレーニングによるベースライン結果も提示する。
さらに,データセットを拡張するために合成シーケンスを作成するフレームワークを提案する。
この枠組みはアニメーション魚モデルと現実的な水中環境で構成されている。
学習中の合成データを含む効果を分析し,実際の水中トレーニングデータと合成水中トレーニングデータの組み合わせが追跡性能を向上させることを示す。
コードとデータへのリンクはhttps://www.vap.aau.dk/brackishmotにある。
関連論文リスト
- Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
本稿では,水中ビジュアルオブジェクト追跡(UVOT)のための新しいデータセットと汎用トラッカ拡張手法を提案する。
水中環境は、一様でない照明条件、視界の低さ、鋭さの欠如、コントラストの低さ、カモフラージュ、懸濁粒子からの反射を示す。
本研究では,追尾品質の向上に特化して設計された水中画像強調アルゴリズムを提案する。
この手法により、最先端(SOTA)ビジュアルトラッカーの最大5.0%のAUCの性能が向上した。
論文 参考訳(メタデータ) (2023-08-30T07:41:26Z) - Whale Detection Enhancement through Synthetic Satellite Images [13.842008598751445]
実際のデータのみをトレーニングに使用した場合と比較して,捕鯨の検出において15%の性能向上が達成できることが示されている。
シミュレーションプラットフォームSeaDroneSim2のコードをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2023-08-15T13:35:29Z) - Synthetic Data-based Detection of Zebras in Drone Imagery [0.8249180979158817]
本稿では,人工データのみを用いて動物探知機を訓練する手法を提案する。
データセットには、RGB、深さ、骨格関節位置、ポーズ、形状、各被験者のインスタンスセグメンテーションが含まれる。
学習中に人工データのみを用いてゼブラを検出できることを示す。
論文 参考訳(メタデータ) (2023-04-30T09:24:31Z) - Large Scale Real-World Multi-Person Tracking [68.27438015329807]
本稿では,新しい大規模多人数追跡データセットであるtexttPersonPath22を提案する。
MOT17、HiEve、MOT20などの高品質なマルチオブジェクト追跡データセットよりも桁違いに大きい。
論文 参考訳(メタデータ) (2022-11-03T23:03:13Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
本稿では,RGBDカメラを用いて動的屋内シーンのフリー視点映像を合成することを提案する。
我々は、RGBDフレームから点雲を生成し、それをニューラル機能を介して、自由視点ビデオにレンダリングする。
そこで本研究では,未完成の深度を適応的に塗布して新規なビューを描画する,シンプルなRegional Depth-Inpaintingモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-22T03:17:35Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
異なるシナリオにおけるトラッキング問題に1つのパラダイムで対処するために,UTT(Unified Transformer Tracker)を提案する。
SOT(Single Object Tracking)とMOT(Multiple Object Tracking)の両方を対象とするトラックトランスフォーマーを開発した。
論文 参考訳(メタデータ) (2022-03-29T01:38:49Z) - A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater
Visual Analysis [2.6476746128312194]
我々は、DeepFishを大規模データセットでベンチマークスイートとして提示し、いくつかのコンピュータビジョンタスクのためのメソッドをトレーニングし、テストする。
このデータセットは、熱帯オーストラリアの海洋環境にある20の温帯生物から採取された約4万枚の画像で構成されている。
実験では,データセットの特徴を詳細に分析し,いくつかの最先端手法の性能評価を行った。
論文 参考訳(メタデータ) (2020-08-28T12:20:59Z) - Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data
Generation [88.04759848307687]
Meta-Sim2では,パラメータに加えてシーン構造を学習することを目指している。
強化学習(Reinforcement Learning)を使用してモデルをトレーニングし、トレーニング成功の鍵となる合成画像とターゲット画像の間に特徴空間のばらつきを設計する。
また,この手法は,他のベースラインシミュレーション手法と対照的に,生成したデータセット上でトレーニングしたオブジェクト検出器の性能を下流で向上させることを示す。
論文 参考訳(メタデータ) (2020-08-20T17:28:45Z) - Exploring the Impacts from Datasets to Monocular Depth Estimation (MDE)
Models with MineNavi [5.689127984415125]
ディープラーニングに基づく現在のコンピュータビジョンタスクは、モデルトレーニングやテストのためのアノテーションを備えた大量のデータを必要とする。
実際には、高密度推定タスクのための手動ラベリングは非常に困難または不可能であり、データセットのシーンは小さな範囲に制限されることが多い。
本稿では,手作業の負担を伴わない拡張可能なデータセットを得るための合成データセット生成手法を提案する。
論文 参考訳(メタデータ) (2020-08-19T14:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。