Comprehensive scheme for identifying defects in solid-state quantum
systems
- URL: http://arxiv.org/abs/2305.17889v2
- Date: Thu, 20 Jul 2023 08:47:58 GMT
- Title: Comprehensive scheme for identifying defects in solid-state quantum
systems
- Authors: Chanaprom Cholsuk, Sujin Suwanna, Tobias Vogl
- Abstract summary: A solid-state quantum emitter is one of the indispensable components for optical quantum technologies.
We demonstrate the calculation of the complete optical fingerprints of quantum emitters in hexagonal boron nitride.
We apply this approach to predict the suitability for using the emitters in specific quantum applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A solid-state quantum emitter is one of the indispensable components for
optical quantum technologies. Ideally, an emitter should have a compatible
wavelength for efficient coupling to other components in a quantum network. It
is therefore essential to understand fluorescent defects that lead to specific
emitters. In this work, we employ density functional theory (DFT) to
demonstrate the calculation of the complete optical fingerprints of quantum
emitters in the two-dimensional material hexagonal boron nitride. These
emitters are of great interest, yet many of them are still to be identified.
Our results suggest that instead of comparing a single optical property, such
as the commonly used zero-phonon line energy, multiple properties should be
used when comparing theoretical simulations to the experiment. This way, the
entire electronic structure can be predicted and quantum emitters can be
designed and tailored. Moreover, we apply this approach to predict the
suitability for using the emitters in specific quantum applications,
demonstrating through the examples of the Al$_{\text{N}}$ and
P$_{\text{N}}$V$_{\text{B}}$ defects. We therefore combine and apply DFT
calculations to identify quantum emitters in solid-state crystals with a lower
risk of misassignments as well as a way to design and tailor optical quantum
systems. This consequently serves as a recipe for classification and the
generation of universal solid-state quantum emitter systems in future hybrid
quantum networks.
Related papers
- Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Identifying electronic transitions of defects in hexagonal boron nitride
for quantum memories [0.6827423171182154]
A quantum memory is a crucial keystone for enabling large-scale quantum networks.
This work proposes a quantum memory based on color centers in hexagonal boron nitride (hBN)
It is found that some defects inherit the $Lambda$ electronic structures desirable for a Raman-type quantum memory.
arXiv Detail & Related papers (2023-10-31T17:13:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - Midgap state requirements for optically active quantum defects [0.0]
Optically active quantum defects play an important role in quantum sensing, computing, and communication.
It is commonly assumed that only quantum defects introducing levels well within the band gap and far from the band edges are of interest for quantum technologies.
We show that optically active defects with energy levels close to the band edges can display similar properties.
arXiv Detail & Related papers (2023-02-21T16:07:04Z) - Tailoring the Emission Wavelength of Color Centers in Hexagonal Boron
Nitride for Quantum Applications [0.0]
We calculate and manipulate the transition energy of fluorescent defects in hexagonal boron nitride.
Using strain-tuning we can tailor the optical transition energy of suitable quantum emitters to match precisely that of quantum technology applications.
arXiv Detail & Related papers (2022-07-18T10:55:24Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Statistical limits for quantum networks with semiconductor entangled
photon sources [1.44854099261305]
We explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade.
We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks.
arXiv Detail & Related papers (2021-09-14T14:57:50Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.