論文の概要: Revisiting Weighted Aggregation in Federated Learning with Neural
Networks
- arxiv url: http://arxiv.org/abs/2302.10911v4
- Date: Mon, 12 Jun 2023 14:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 11:34:38.500795
- Title: Revisiting Weighted Aggregation in Federated Learning with Neural
Networks
- Title(参考訳): ニューラルネットワークを用いた連合学習における重み付きアグリゲーションの再検討
- Authors: Zexi Li, Tao Lin, Xinyi Shang, Chao Wu
- Abstract要約: フェデレートラーニング(FL)では、局所モデルの重み付けアグリゲーションを行い、グローバルモデルを生成する。
重みの和は1より小さくなり、大域的な重みの縮減効果と一般化の改善がもたらされる。
我々はFedLAWという名前の学習可能な集約重み付きフェデレート学習の効果的な方法を提案する。
- 参考スコア(独自算出の注目度): 5.779987217952073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In federated learning (FL), weighted aggregation of local models is conducted
to generate a global model, and the aggregation weights are normalized (the sum
of weights is 1) and proportional to the local data sizes. In this paper, we
revisit the weighted aggregation process and gain new insights into the
training dynamics of FL. First, we find that the sum of weights can be smaller
than 1, causing global weight shrinking effect (analogous to weight decay) and
improving generalization. We explore how the optimal shrinking factor is
affected by clients' data heterogeneity and local epochs. Second, we dive into
the relative aggregation weights among clients to depict the clients'
importance. We develop client coherence to study the learning dynamics and find
a critical point that exists. Before entering the critical point, more coherent
clients play more essential roles in generalization. Based on the above
insights, we propose an effective method for Federated Learning with Learnable
Aggregation Weights, named as FedLAW. Extensive experiments verify that our
method can improve the generalization of the global model by a large margin on
different datasets and models.
- Abstract(参考訳): 連合学習(fl)では、局所モデルの重み付き集計を行い、大域モデルを生成し、重み付け重みを正規化し(重みの和は1である)、局所データサイズに比例する。
本稿では,重み付け集約プロセスを再検討し,flのトレーニングダイナミクスに関する新たな知見を得る。
まず,重みの総和が1より小さくなり,大域的な重み縮小効果(重み減少と類似)が生じ,一般化が改善されることが判明した。
クライアントのデータ不均一性と局所的エポックに最適な縮小係数がどう影響するかを検討する。
次に、クライアント間の相対的な集約重みを掘り下げて、クライアントの重要性を説明します。
学習のダイナミクスを研究するためにクライアントコヒーレンスを開発し,その重要な点を見出す。
臨界点に入る前に、よりコヒーレントなクライアントは一般化においてより重要な役割を果たす。
以上の知見に基づいて,FedLAWと命名された学習可能な集約重み付きフェデレート学習の効果的な方法を提案する。
広範な実験により,本手法が異なるデータセットとモデルに対して大きなマージンでグローバルモデルの一般化を改善できることが確かめられた。
関連論文リスト
- Dual-Criterion Model Aggregation in Federated Learning: Balancing Data Quantity and Quality [0.0]
フェデレートラーニング(FL)は、プライバシ保護のための協調学習の鍵となる方法の1つとなっている。
集約アルゴリズムは、システムの有効性と安全性を確保する上で最も重要なコンポーネントの1つとして認識される。
本研究では,クライアントノードからのデータ量と品質を含む新しい二項重み付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-12T14:09:16Z) - FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) は分散機械学習のパラダイムであり、分散計算と周期モデル合成によってグローバルに堅牢なモデルを実現する。
広く採用されているにもかかわらず、既存のFLとPFLの作業は、クラス不均衡の問題に包括的に対処していない。
本稿では,適応型クライアント間コラーニング手法を用いて,クラス不均衡に対処できる効率的なPFLアルゴリズムであるFedReMaを提案する。
論文 参考訳(メタデータ) (2024-11-04T05:44:28Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - An Element-Wise Weights Aggregation Method for Federated Learning [11.9232569348563]
フェデレートラーニングのための革新的要素量集約法(EWWA-FL)を提案する。
EWWA-FLは、個々の要素のレベルでグローバルモデルに局所的な重みを集約し、各クライアントが学習プロセスに要素的に貢献することを可能にする。
各クライアントのユニークなデータセット特性を考慮して、EWWA-FLはグローバルモデルの堅牢性を異なるデータセットに拡張する。
論文 参考訳(メタデータ) (2024-04-24T15:16:06Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
カスタムクライアントモデルをトレーニングするための選択されたアプローチが、グローバルモデルにどのように影響するかを示す。
KDとLwoF(LwoF)を併用して、改良されたパーソナライズドモデルを生成する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T11:12:57Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Federated Residual Learning [53.77128418049985]
クライアントはローカルモデルを個別に訓練し、サーバ側で共有するモデルと共同で予測を行う。
この新しいフェデレートされた学習フレームワークを使用することで、統合トレーニングが提供するパフォーマンス上のメリットをすべて享受しながら、中央共有モデルの複雑さを最小限にすることができる。
論文 参考訳(メタデータ) (2020-03-28T19:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。