論文の概要: PointFISH -- learning point cloud representations for RNA localization
patterns
- arxiv url: http://arxiv.org/abs/2302.10923v1
- Date: Tue, 21 Feb 2023 08:50:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 17:31:13.881078
- Title: PointFISH -- learning point cloud representations for RNA localization
patterns
- Title(参考訳): PointFISH --RNAローカライゼーションパターンのための学習ポイントクラウド表現
- Authors: Arthur Imbert, Florian Mueller, Thomas Walter
- Abstract要約: PointFISHは、RNA点雲の連続ベクトル表現を計算するための注意ベースのネットワークである。
この埋め込みにより、スケーラブルでフレキシブルな空間転写解析が可能となり、手作りパイプラインの性能にマッチする。
- 参考スコア(独自算出の注目度): 1.418033127602866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subcellular RNA localization is a critical mechanism for the spatial control
of gene expression. Its mechanism and precise functional role is not yet very
well understood. Single Molecule Fluorescence in Situ Hybridization (smFISH)
images allow for the detection of individual RNA molecules with subcellular
accuracy. In return, smFISH requires robust methods to quantify and classify
RNA spatial distribution. Here, we present PointFISH, a novel computational
approach for the recognition of RNA localization patterns. PointFISH is an
attention-based network for computing continuous vector representations of RNA
point clouds. Trained on simulations only, it can directly process extracted
coordinates from experimental smFISH images. The resulting embedding allows
scalable and flexible spatial transcriptomics analysis and matches performance
of hand-crafted pipelines.
- Abstract(参考訳): 細胞内RNAの局在は遺伝子発現の空間制御の重要なメカニズムである。
その機構と正確な機能的役割はまだよく分かっていない。
Situ Hybridization (smFISH) 画像中の単分子蛍光は、細胞内の精度で個々のRNA分子を検出できる。
その代わり、smFISHはRNA空間分布を定量化し分類する堅牢な方法を必要とする。
本稿では、RNAローカライゼーションパターンの認識のための新しい計算手法であるPointFISHを提案する。
PointFISHは、RNA点雲の連続ベクトル表現を計算するための注意ベースのネットワークである。
シミュレーションのみに基づいて、実験的なsmFISH画像から抽出した座標を直接処理することができる。
この埋め込みにより、スケーラブルでフレキシブルな空間転写解析が可能となり、手作りパイプラインの性能にマッチする。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations [54.17275171325324]
線形表現仮説(LRH)に対する反例を提示する。
入力トークンシーケンスを繰り返すように訓練されると、ニューラルネットワークは、方向ではなく、特定の順序で各位置のトークンを表現することを学ぶ。
これらの結果は、解釈可能性の研究はLRHに限定されるべきでないことを強く示唆している。
論文 参考訳(メタデータ) (2024-08-20T15:04:37Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
本研究では,フローマッチング,すなわちRNACGに基づく普遍的なRNA配列生成モデルを開発する。
RNACGは様々な条件入力に対応でき、可搬性があり、ユーザーは条件入力のために符号化ネットワークをカスタマイズできる。
RNACGは、シーケンス生成およびプロパティ予測タスクに広範な適用性を示す。
論文 参考訳(メタデータ) (2024-07-29T09:46:46Z) - scRDiT: Generating single-cell RNA-seq data by diffusion transformers and accelerating sampling [9.013834280011293]
シングルセルRNAシークエンシング(英: Single-cell RNA Sequencing、scRNA-seq)は、生物研究で広く利用されている基盤技術である。
本研究は、scRDiT(scRNA-seq Diffusion Transformer)と呼ばれる生成的アプローチを紹介する。
この方法は、実際のデータセットを活用して、仮想scRNA-seqデータを生成する。
論文 参考訳(メタデータ) (2024-04-09T09:25:16Z) - Splicing Up Your Predictions with RNA Contrastive Learning [4.35360799431127]
我々は、代替スプライシング遺伝子複製によって生成された機能配列間の類似性を利用して、対照的な学習手法をゲノムデータに拡張する。
RNA半減期やリボソーム負荷予測などの下流タスクにおけるそれらの有用性を検証する。
学習された潜在空間の探索は、我々の対照的な目的が意味論的に意味のある表現をもたらすことを示した。
論文 参考訳(メタデータ) (2023-10-12T21:51:25Z) - Analyzing scRNA-seq data by CCP-assisted UMAP and t-SNE [0.0]
相関クラスタリングとプロジェクション(CCP)は、cRNA-seqデータを前処理する有効な方法として導入された。
CCPは、行列対角化を必要としないデータドメインアプローチである。
8つの公開データセットを使用することで、CCPは UMAP と t-SNE の可視化を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-06-23T19:15:43Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - A simple normative network approximates local non-Hebbian learning in
the cortex [12.940770779756482]
神経科学実験は、皮質ニューロンによる感覚入力の処理は、指示信号によって変調されることを示した。
ここでは、規範的なアプローチを採用し、フィードフォワードデータの投影を導く監督的な入力として、これらの命令信号をモデル化する。
オンラインアルゴリズムは、シナプス学習規則が大脳皮質で観察されるカルシウムプラトー電位依存的な可塑性に類似しているニューラルネットワークによって実装することができる。
論文 参考訳(メタデータ) (2020-10-23T20:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。