Quantum annealing with inequality constraints: the set cover problem
- URL: http://arxiv.org/abs/2302.11185v1
- Date: Wed, 22 Feb 2023 07:39:51 GMT
- Title: Quantum annealing with inequality constraints: the set cover problem
- Authors: Hristo N. Djidjev
- Abstract summary: This paper presents two novel approaches for solving the set cover problem with multiple inequality constraints on quantum annealers.
The first method uses the augmented Lagrangian approach to represent the constraints, while the second method employs a higher-order binary optimization (HUBO) formulation.
Both approaches outperform the standard approach with slack variables for solving problems with inequality constraints on D-Wave quantum annealers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents two novel approaches for solving the set cover problem
(SCP) with multiple inequality constraints on quantum annealers. The first
method uses the augmented Lagrangian approach to represent the constraints,
while the second method employs a higher-order binary optimization (HUBO)
formulation. Our experimental analysis demonstrate that both approaches
outperform the standard approach with slack variables for solving problems with
inequality constraints on D-Wave quantum annealers. The results show that the
augmented Lagrangian method can be successfully used to implement a large
number of inequality constraints, making it applicable to a wide range of
constrained problems beyond the SCP. The HUBO formulation performs slightly
better than the augmented Lagrangian method in solving the SCP, but it is less
scalable in terms of embeddability in the quantum chip. These findings could
impact the use of quantum annealers for solving constrained optimization
problems.
Related papers
- Subgradient Method using Quantum Annealing for Inequality-Constrained Binary Optimization Problems [0.4915744683251151]
We show that inequality constraints can be relaxed into a similar objective function through statistical mechanics.
We evaluate the performance of this method in a typical inequality-constrained optimization problem, the quadratic knapsack problem.
arXiv Detail & Related papers (2024-11-11T11:59:50Z) - Lagrangian Duality in Quantum Optimization: Overcoming QUBO Limitations for Constrained Problems [0.0]
We propose an approach to solving constrained optimization problems based on embedding the concept of Lagrangian duality into the framework of adiabatic quantum computation.
Within the setting of circuit-model fault-tolerant quantum computation, we demonstrate that this approach achieves a quadratic improvement in circuit depth and maintains a constraint-independent circuit width.
arXiv Detail & Related papers (2023-10-06T19:09:55Z) - Improving Performance in Combinatorial Optimization Problems with
Inequality Constraints: An Evaluation of the Unbalanced Penalization Method
on D-Wave Advantage [0.0]
A new method known as unbalanced penalization has been presented to avoid using slack variables.
This work tests the unbalanced penalization method using real quantum hardware on D-Wave Advantage for the traveling salesman problem (TSP)
The results show that the unbalanced penalization method outperforms the solutions found using slack variables.
arXiv Detail & Related papers (2023-05-30T05:40:50Z) - Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno
Effect for Solving Binary Optimization Problems with Multiple Constraints [5.259170150405252]
This paper presents a hybrid framework that combines the use of standard Ising Hamiltonians to solve a subset of the constraints.
The resolution of these non-Ising constraints is achieved through either penalty dephasing or the quantum Zeno effect.
arXiv Detail & Related papers (2023-05-14T03:49:10Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.