論文の概要: Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations
- arxiv url: http://arxiv.org/abs/2302.11354v1
- Date: Wed, 22 Feb 2023 12:59:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 15:14:23.925801
- Title: Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations
- Title(参考訳): ニューラル制御微分方程式を用いた動的グラフ埋め込みの学習
- Authors: Tiexin Qin and Benjamin Walker and Terry Lyons and Hong Yan and
Haoliang Li
- Abstract要約: 本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
- 参考スコア(独自算出の注目度): 21.936437653875245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on representation learning for dynamic graphs with
temporal interactions. A fundamental issue is that both the graph structure and
the nodes own their own dynamics, and their blending induces intractable
complexity in the temporal evolution over graphs. Drawing inspiration from the
recent process of physical dynamic models in deep neural networks, we propose
Graph Neural Controlled Differential Equation (GN-CDE) model, a generic
differential model for dynamic graphs that characterise the continuously
dynamic evolution of node embedding trajectories with a neural network
parameterised vector field and the derivatives of interactions w.r.t. time. Our
framework exhibits several desirable characteristics, including the ability to
express dynamics on evolving graphs without integration by segments, the
capability to calibrate trajectories with subsequent data, and robustness to
missing observations. Empirical evaluation on a range of dynamic graph
representation learning tasks demonstrates the superiority of our proposed
approach compared to the baselines.
- Abstract(参考訳): 本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
基本的な問題は、グラフ構造とノードがそれぞれ独自のダイナミクスを持ち、それらのブレンドがグラフ上の時間的進化において難解な複雑さを引き起こすことである。
深層ニューラルネットワークにおける物理力学モデルの最近のプロセスから着想を得たグラフニューラル制御微分方程式(GN-CDE)モデル,ニューラルネットワークパラメータ化されたベクトル場と相互作用の導関数w.r.t.時間によるノード埋め込み軌道の連続的動的進化を特徴付ける動的グラフの一般微分モデルを提案する。
提案フレームワークは,セグメントによる積分を伴わないグラフの動的表現,その後のデータによる軌跡の校正機能,観察の欠如に対する堅牢性など,いくつかの望ましい特徴を示す。
動的グラフ表現学習タスクにおける経験的評価は,提案手法がベースラインよりも優れていることを示す。
関連論文リスト
- Signed Graph Neural Ordinary Differential Equation for Modeling
Continuous-time Dynamics [13.912268915939656]
グラフニューラルネットワークを通常の微分方程式と統合する一般的なアプローチは、有望な性能を示している。
符号付きグラフニューラル常微分方程式は,符号付き情報の誤キャプチャの限界に十分対処する。
提案したソリューションは、柔軟性と効率性の両方を誇っている。
論文 参考訳(メタデータ) (2023-12-18T13:45:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - Dynamic Graph Representation Learning with Neural Networks: A Survey [0.0]
動的グラフ表現は新しい機械学習問題として現れた。
本稿では,動的グラフ学習に関連する問題とモデルをレビューすることを目的とする。
論文 参考訳(メタデータ) (2023-04-12T09:39:17Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution [60.695162101159134]
既存の作業は、動的グラフを変更のシーケンスとして見るだけである。
動的グラフを接合時間に付随する時間的エッジシーケンスとして定式化する。
頂点とエッジのタイムパン
組み込みにはタイムアウェアなTransformerが提案されている。
vertexの動的接続と学習へのToEs。
頂点表現
論文 参考訳(メタデータ) (2022-07-01T15:32:56Z) - Continuous Temporal Graph Networks for Event-Based Graph Data [41.786721257905555]
本研究では、時間グラフデータの連続的ダイナミクスを捉えるために、CTGN(Continuous Temporal Graph Networks)を提案する。
鍵となる考え方は、ニューラルネットワークの常微分方程式(ODE)を用いて、動的グラフ上のノード表現の連続的ダイナミクスを特徴づけることである。
帰納的タスクと帰納的タスクの両方の実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-31T16:17:02Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
時系列グラフネットワーク(TGN)は,時系列イベントのシーケンスとして表される動的グラフの深層学習のための汎用的で効率的なフレームワークである。
メモリモジュールとグラフベースの演算子を組み合わせた新しい組み合わせにより、TGNは、計算効率が向上した以前のアプローチを大幅に上回ることができる。
論文 参考訳(メタデータ) (2020-06-18T16:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。