論文の概要: Deep learning model for Mongolian Citizens Feedback Analysis using Word
Vector Embeddings
- arxiv url: http://arxiv.org/abs/2302.12069v1
- Date: Thu, 23 Feb 2023 14:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 14:48:09.507640
- Title: Deep learning model for Mongolian Citizens Feedback Analysis using Word
Vector Embeddings
- Title(参考訳): 単語ベクトル埋め込みを用いたモンゴル市民のフィードバック分析のためのディープラーニングモデル
- Authors: Zolzaya Dashdorj and Tsetsentsengel Munkhbayar and Stanislav Grigorev
- Abstract要約: 本研究では,2つの単語埋め込みを用いたモンゴル語のフィードバック分類について検討した。
2012年から2018年にかけて収集されたCyrillicのフィードバックデータを使用します。
その結果, 単語の埋め込みは, 深層学習に基づく提案モデルを改善することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large amount of feedback was collected over the years. Many feedback
analysis models have been developed focusing on the English language.
Recognizing the concept of feedback is challenging and crucial in languages
which do not have applicable corpus and tools employed in Natural Language
Processing (i.e., vocabulary corpus, sentence structure rules, etc). However,
in this paper, we study a feedback classification in Mongolian language using
two different word embeddings for deep learning. We compare the results of
proposed approaches. We use feedback data in Cyrillic collected from 2012-2018.
The result indicates that word embeddings using their own dataset improve the
deep learning based proposed model with the best accuracy of 80.1% and 82.7%
for two classification tasks.
- Abstract(参考訳): 長年にわたって大量のフィードバックが収集された。
多くのフィードバック分析モデルが英語を中心に開発されている。
フィードバックの概念を認識することは、自然言語処理に応用可能なコーパスやツール(語彙コーパス、文構造ルールなど)を持たない言語において、困難かつ不可欠である。
しかし,本稿では,2つの単語埋め込みを用いたモンゴル語のフィードバック分類について検討する。
提案手法の結果を比較した。
2012年から2018年にかけて収集されたcyrillicのフィードバックデータを使用する。
その結果,2つの分類タスクにおいて,単語の埋め込みが80.1%と82.7%の精度で深層学習に基づくモデルを改善することが示唆された。
関連論文リスト
- Large corpora and large language models: a replicable method for automating grammatical annotation [0.0]
英語評価動詞構築における形式的変化の事例研究に応用された方法論的パイプライン「consider X (as) (to be) Y」を紹介する。
少数のトレーニングデータだけで、保留中のテストサンプルで90%以上の精度でモデルに到達します。
本研究は, 文法的構成と文法的変化および変化に関する幅広いケーススタディに対して, 結果の一般化可能性について論じる。
論文 参考訳(メタデータ) (2024-11-18T03:29:48Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
我々は、より情報的な言語フィードバックを利用する新しいアプローチであるLanguage Feedback (ILF)から学習を導入する。
ILFは3つのステップから成り、まず言語モデルを入力に条件付けし、最初のLM出力を出力し、改善を生成する。
理論的には、ILFは人間からのフィードバックによる強化学習と同様、ベイズ推論とみなすことができる。
論文 参考訳(メタデータ) (2023-03-28T17:04:15Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
3段階学習アルゴリズムを用いてモデル出力の言語フィードバックから学習する。
合成実験において、まず言語モデルがフィードバックを正確に組み込んで改良を行うかどうかを評価する。
人間の手書きフィードバックのサンプルは100程度しかなく, 学習アルゴリズムはGPT-3モデルを微調整し, ほぼ人間レベルの要約を行う。
論文 参考訳(メタデータ) (2022-04-29T15:06:58Z) - Improving Cross-Lingual Reading Comprehension with Self-Training [62.73937175625953]
現在の最新モデルは、いくつかのベンチマークで人間のパフォーマンスを上回っています。
前作では、ゼロショットのクロスリンガル読解のための事前訓練された多言語モデルの能力を明らかにしている。
本稿では,ラベルのないデータを利用して性能を向上する。
論文 参考訳(メタデータ) (2021-05-08T08:04:30Z) - Cross-lingual Approach to Abstractive Summarization [0.0]
言語間モデル転送は低リソース言語でうまく適用できる。
深層ニューラルネットワークとシークエンス・トゥ・シークエンスアーキテクチャに基づく事前学習型英語要約モデルを用いた。
対象言語データに異なる比率のモデルを開発し,微調整を行った。
論文 参考訳(メタデータ) (2020-12-08T09:30:38Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - Investigating Language Impact in Bilingual Approaches for Computational
Language Documentation [28.838960956506018]
本稿では,翻訳言語の選択が後続文書作業に与える影響について検討する。
我々は56対のバイリンガルペアを作成し、低リソースの教師なし単語分割とアライメントのタスクに適用する。
この結果から,ニューラルネットワークの入力表現に手がかりを取り入れることで,翻訳品質とアライメント品質が向上することが示唆された。
論文 参考訳(メタデータ) (2020-03-30T10:30:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。