論文の概要: Explorative analysis of human disease-symptoms relations using the
Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2302.12075v1
- Date: Thu, 23 Feb 2023 15:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 14:48:46.270693
- Title: Explorative analysis of human disease-symptoms relations using the
Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークを用いたヒト疾患症状関係の探索的解析
- Authors: Zolzaya Dashdorj and Stanislav Grigorev and Munguntsatsral Dovdondash
- Abstract要約: 本研究は, 疾患予測タスクにおける症状タイプの範囲を理解することを目的としている。
その結果,早期に98~100%の精度で機械学習が病気を診断できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of health-care and bio-medical research, understanding the
relationship between the symptoms of diseases is crucial for early diagnosis
and determining hidden relationships between diseases. The study aimed to
understand the extent of symptom types in disease prediction tasks. In this
research, we analyze a pre-generated symptom-based human disease dataset and
demonstrate the degree of predictability for each disease based on the
Convolutional Neural Network and the Support Vector Machine. Ambiguity of
disease is studied using the K-Means and the Principal Component Analysis. Our
results indicate that machine learning can potentially diagnose diseases with
the 98-100% accuracy in the early stage, taking the characteristics of symptoms
into account. Our result highlights that types of unusual symptoms are a good
proxy for disease early identification accurately. We also highlight that
unusual symptoms increase the accuracy of the disease prediction task.
- Abstract(参考訳): 医療・生物医学研究の分野では、疾患の症状間の関係を理解することは、早期診断と疾患間の隠れた関係の決定に不可欠である。
本研究は, 疾患予測タスクにおける症状タイプの範囲を理解することを目的とした。
本研究では,先行した症状に基づくヒト疾患データセットを解析し,畳み込みニューラルネットワークとサポートベクトルマシンに基づく各疾患の予測可能性の度合いを示す。
K-平均と主成分分析を用いて疾患のあいまいさを研究する。
以上の結果から,機械学習は症状の特徴を考慮し,早期に98~100%の精度で疾患を診断できる可能性が示唆された。
以上の結果から,異常な症状が早期診断に有効であることが示唆された。
また,異常症状が疾患予測タスクの精度を高めることも強調した。
関連論文リスト
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - CoAD: Automatic Diagnosis through Symptom and Disease Collaborative
Generation [37.25451059168202]
CoADは病気と症状の協調生成フレームワークである。
自動的な疾患診断を改善するために、いくつかの重要な革新が組み込まれている。
過去の診断結果よりも平均2.3%改善している。
論文 参考訳(メタデータ) (2023-07-17T07:24:55Z) - Common human diseases prediction using machine learning based on survey
data [0.0]
我々は疾患の症状を分析し,その症状に基づいて疾患の予知を行った。
我々は様々な症状を調査し,その課題を完了させるために人から調査を受けた。
モデルのトレーニングにはいくつかの分類アルゴリズムが使用されている。
論文 参考訳(メタデータ) (2022-09-22T02:59:47Z) - Context-aware Health Event Prediction via Transition Functions on
Dynamic Disease Graphs [15.17817233616652]
多くの機械学習アプローチは、患者の異なる訪問で病気の表現が静的であると仮定している。
動的疾患グラフ上の遷移関数を用いた文脈認識学習フレームワークを提案する。
2つの実世界のEHRデータセットの実験結果から、提案されたモデルは、健康事象を予測する上で、技術の現状よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-12-09T20:06:39Z) - Correlation-based Discovery of Disease Patterns for Syndromic
Surveillance [0.0]
シナドロミック監視は 早期の症状の 検出を目的としてる
早期症状は通常多くの疾患で共有され、特定の疾患は感染の初期段階にいくつかの臨床像を持つことがある。
歴史的データからそのようなパターンを発見するための,新しい,データ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T11:50:26Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
ソース疾患からターゲット疾患へ診断経験を移すために、低リソースの医療対話生成を提案します。
また,新しい疾患の症状相関を推論するためのコモンセンスグラフの進化を学習するグラフ進化メタラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2020-12-22T13:20:23Z) - Relation-weighted Link Prediction for Disease Gene Identification [0.3078691410268859]
このようなグラフ上の疾患遺伝子を識別する新しい機械学習手法を提案する。
我々のアルゴリズムは、病気遺伝子同定における最先端の競争相手を24.1%上回っている。
また, パーキンソン病の臨床治験における薬物標的の予測に関して, 標的同定の主導的取り組みである Open Targets よりも高い精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-11-10T15:09:33Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。