Quantum Information Geometry and its classical aspect
- URL: http://arxiv.org/abs/2302.12652v1
- Date: Tue, 21 Feb 2023 21:39:02 GMT
- Title: Quantum Information Geometry and its classical aspect
- Authors: Sergio B. Ju\'arez
- Abstract summary: This thesis explores important concepts in the area of quantum information geometry and their relationships.
We highlight the unique characteristics of these concepts that arise from their quantum mechanical foundations.
We also demonstrate that for Gaussian states, classical analogs can be used to obtain the same mathematical results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This thesis explores important concepts in the area of quantum information
geometry and their relationships. We highlight the unique characteristics of
these concepts that arise from their quantum mechanical foundations and
emphasize the differences from their classical counterparts. However, we also
demonstrate that for Gaussian states, classical analogs can be used to obtain
the same mathematical results, providing a valuable tool for simplifying
calculations.
To establish the groundwork for the subsequent analysis, we introduce some
fundamental ideas from quantum field theory. We then explore the structure of
parameter space using the fidelity and the Quantum Geometric Tensor (QGT),
which is composed of the Quantum Metric Tensor and the Berry curvature. We also
introduce the Quantum Covariance Matrix (QCM) and show its relationship to the
QGT. We present how the QCM can be used to study entanglement between quantum
systems by obtaining the purity, linear entropy, and von Neumann entropy. To
illustrate these concepts, we calculate all these quantities for several
systems, including the Stern-Gerlach, a two qubits system, two symmetrically
coupled harmonic oscillators, and N coupled harmonic oscillators.
In the final section of this thesis, we examine how the aforementioned
quantum concepts can be applied in a classical sense, following the approach
taken by Hannay with the Berry phase. We examine classical analogs of the QGT
and QCM and since for Gaussian states, all the necessary information to
calculate purity, linear entropy, and von Neumann entropy is contained within
the QCM, we also generate classical analogs for them. These results in turn can
be used to derive measures of separability for classical systems.
Related papers
- Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Mixed Quantum-Semiclassical Simulation [0.0]
We study the quantum simulation of mixed quantum-semiclassical (MQS) systems, of fundamental interest in many areas of physics.
A basic question for these systems is whether quantum algorithms of MQS systems would be valuable at all, when one could instead study the full quantum-quantum system.
arXiv Detail & Related papers (2023-08-30T17:02:33Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Classical analogs of the covariance matrix, purity, linear entropy, and
von Neumann entropy [0.0]
We propose analogs of the purity, linear quantum entropy, and von Neumann entropy for classical integrable systems.
These analogs can be interpreted as quantities that reveal how much information from the complete system remains in the considered subsystem.
arXiv Detail & Related papers (2021-12-20T22:57:57Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.