Deep active learning for nonlinear system identification
- URL: http://arxiv.org/abs/2302.12667v1
- Date: Fri, 24 Feb 2023 14:46:36 GMT
- Title: Deep active learning for nonlinear system identification
- Authors: Erlend Torje Berg Lundby, Adil Rasheed, Ivar Johan Halvorsen, Dirk
Reinhardt, Sebastien Gros, Jan Tommy Gravdahl
- Abstract summary: We develop a novel deep active learning acquisition scheme for nonlinear system identification.
Global exploration acquires a batch of initial states corresponding to the most informative state-action trajectories.
Local exploration solves an optimal control problem, finding the control trajectory that maximizes some measure of information.
- Score: 0.4485566425014746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exploding research interest for neural networks in modeling nonlinear
dynamical systems is largely explained by the networks' capacity to model
complex input-output relations directly from data. However, they typically need
vast training data before they can be put to any good use. The data generation
process for dynamical systems can be an expensive endeavor both in terms of
time and resources. Active learning addresses this shortcoming by acquiring the
most informative data, thereby reducing the need to collect enormous datasets.
What makes the current work unique is integrating the deep active learning
framework into nonlinear system identification. We formulate a general static
deep active learning acquisition problem for nonlinear system identification.
This is enabled by exploring system dynamics locally in different regions of
the input space to obtain a simulated dataset covering the broader input space.
This simulated dataset can be used in a static deep active learning acquisition
scheme referred to as global explorations. The global exploration acquires a
batch of initial states corresponding to the most informative state-action
trajectories according to a batch acquisition function. The local exploration
solves an optimal control problem, finding the control trajectory that
maximizes some measure of information. After a batch of informative initial
states is acquired, a new round of local explorations from the initial states
in the batch is conducted to obtain a set of corresponding control trajectories
that are to be applied on the system dynamics to get data from the system.
Information measures used in the acquisition scheme are derived from the
predictive variance of an ensemble of neural networks. The novel method
outperforms standard data acquisition methods used for system identification of
nonlinear dynamical systems in the case study performed on simulated data.
Related papers
- Reconstructing dynamics from sparse observations with no training on target system [0.0]
The power of the proposed hybrid machine-learning framework is demonstrated using a large number of prototypical nonlinear dynamical systems.
The framework provides a paradigm of reconstructing complex and nonlinear dynamics in the extreme situation where training data does not exist and the observations are random and sparse.
arXiv Detail & Related papers (2024-10-28T17:05:04Z) - Active Learning for Control-Oriented Identification of Nonlinear Systems [26.231260751633307]
We present the first finite sample analysis of an active learning algorithm suitable for a general class of nonlinear dynamics.
In certain settings, the excess control cost of our algorithm achieves the optimal rate, up to logarithmic factors.
We validate our approach in simulation, showcasing the advantage of active, control-oriented exploration for controlling nonlinear systems.
arXiv Detail & Related papers (2024-04-13T15:40:39Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control [22.549914935697366]
We present a method to incorporate priori knowledge into data-driven control algorithms using kernel embeddings.
Our proposed approach incorporates prior knowledge of the system dynamics as a bias term in the kernel learning problem.
We demonstrate the improved sample efficiency and out-of-sample generalization of our approach over a purely data-driven baseline.
arXiv Detail & Related papers (2023-01-09T18:35:32Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.