Reservoir-based deterministic loading of single-atom tweezer arrays
- URL: http://arxiv.org/abs/2302.12730v4
- Date: Wed, 2 Aug 2023 15:51:21 GMT
- Title: Reservoir-based deterministic loading of single-atom tweezer arrays
- Authors: Lars Pause, Tilman Preuschoff, Dominik Sch\"affner, Malte Schlosser,
Gerhard Birkl
- Abstract summary: State-of-the-art individual-atom tweezer platforms have relied on spatially superimposing the tweezer array with a cloud of cold atoms created beforehand.
We introduce a modular scheme built on an additional cold-atom reservoir and an array of buffer traps.
The results facilitate increased data rates and unlock a path to continuous operation of individual-atom tweezer arrays in quantum science.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art individual-atom tweezer platforms have relied on loading
schemes based on spatially superimposing the tweezer array with a cloud of cold
atoms created beforehand. Together with immanent atom loss, this dramatically
limits the data rate, as the application sequence must be alternated with the
time-consuming phases of magneto-optical trapping and laser cooling. We
introduce a modular scheme built on an additional cold-atom reservoir and an
array of buffer traps effectively decoupling cold-atom accumulation and
single-atom supply from the quantum-register operation. For this purpose, we
connect a microlens-based tweezer array to a cloud of laser-cooled atoms held
in an auxiliary large-focus dipole trap by utilizing atom transport and buffer
traps for dedicated single-atom supply. We demonstrate deterministic loading of
a hexagonal target structure with atoms solely originating from the reservoir
trap. The results facilitate increased data rates and unlock a path to
continuous operation of individual-atom tweezer arrays in quantum science,
making use of discrete functional modules, operated in parallel and spatially
separated.
Related papers
- Iterative assembly of $^{171}$Yb atom arrays with cavity-enhanced optical lattices [0.1441195472527485]
Assembling and maintaining large arrays of individually addressable atoms is a key requirement for continued scaling of neutral-atom-based quantum computers and simulators.
We demonstrate a new paradigm for assembly of atomic arrays, based on a synergistic combination of optical tweezers and cavity-enhanced optical lattices.
arXiv Detail & Related papers (2024-01-29T14:20:28Z) - Enhanced quantum control of individual ultracold molecules using optical
tweezer arrays [44.99833362998488]
Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions.
We develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers.
arXiv Detail & Related papers (2024-01-24T17:00:39Z) - Strongly subradiant states in planar atomic arrays [39.58317527488534]
We study collective dipolar oscillations in finite planar arrays of quantum emitters in free space.
We show that the external coupling between the collective states associated with the symmetry of the array and with the quasi-flat dispersion of the corresponding infinite lattice plays a crucial role in the boost of their radiative lifetime.
arXiv Detail & Related papers (2023-10-10T17:06:19Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Motional ground-state cooling of single atoms in state-dependent optical
tweezers [0.1631115063641726]
We study a novel laser cooling scheme for single atoms in optical tweezers.
The scheme exploits sequential addressing of red sideband transitions via frequency chirping of the cooling light.
It induces light-assisted collisions, which are key to the assembly of large atom arrays.
arXiv Detail & Related papers (2023-02-08T08:33:19Z) - Enhanced dark-state sideband cooling in trapped atoms via
photon-mediated dipole-dipole interactions [4.915587669065746]
We present an enhanced dark-state sideband cooling in trapped atoms utilizing photon-mediated dipole-dipole interactions among them.
By placing the atoms at the magic interparticle distances, we manifest an outperformed cooling behavior in the target atom.
Our results provide insights to subrecoil cooling of atoms with collective and light-induced long-range dipole-dipole interactions, and pave the way toward implementing genuine quantum operations in multiple quantum registers.
arXiv Detail & Related papers (2022-10-12T13:33:20Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Coherent effects contribution to a fast gate fidelity in ion quantum
computer [47.187609203210705]
We develop a numerical model for full simulation of coherence effects using a linear ion microtrap array and a 2D microtrap array.
We have also studied the dependency of the gate fidelity on the laser power fluctuations.
arXiv Detail & Related papers (2021-12-12T12:53:00Z) - A dual-element, two-dimensional atom array with continuous-mode
operation [0.3262230127283452]
We introduce a dual-element atom array with individual control of single rubidium and cesium atoms.
Our results enable avenues for ancilla-assisted quantum protocols such as quantum non-demolition measurements and quantum error correction.
arXiv Detail & Related papers (2021-10-11T18:00:17Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.