論文の概要: Hierarchical Needs-driven Agent Learning Systems: From Deep
Reinforcement Learning To Diverse Strategies
- arxiv url: http://arxiv.org/abs/2302.13132v1
- Date: Sat, 25 Feb 2023 18:18:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 18:49:24.171227
- Title: Hierarchical Needs-driven Agent Learning Systems: From Deep
Reinforcement Learning To Diverse Strategies
- Title(参考訳): 階層的ニーズ駆動エージェント学習システム:深層強化学習から多様な戦略へ
- Authors: Qin Yang
- Abstract要約: 深層強化学習(DAL)は、AIエージェントが行動や戦略を組織化し、最適化し、多様な戦略を開発するのに役立つ。
本稿では,DALに基づく新しい階層型要求駆動学習システムを導入し,ベイジアンソフトアクター批判(BSAC)と呼ばれる新しいアプローチによる単一ロボットの実装について検討する。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The needs describe the necessities for a system to survive and evolve, which
arouses an agent to action toward a goal, giving purpose and direction to
behavior. Based on Maslow hierarchy of needs, an agent needs to satisfy a
certain amount of needs at the current level as a condition to arise at the
next stage -- upgrade and evolution. Especially, Deep Reinforcement Learning
(DAL) can help AI agents (like robots) organize and optimize their behaviors
and strategies to develop diverse Strategies based on their current state and
needs (expected utilities or rewards). This paper introduces the new
hierarchical needs-driven Learning systems based on DAL and investigates the
implementation in the single-robot with a novel approach termed Bayesian Soft
Actor-Critic (BSAC). Then, we extend this topic to the Multi-Agent systems
(MAS), discussing the potential research fields and directions.
- Abstract(参考訳): このニーズは、システムが生き残り、進化するための必要性を記述し、エージェントが目標に向かって行動し、目的と行動への方向性を与える。
ニーズのMaslow階層に基づいて、エージェントは、アップグレードと進化の次の段階で発生する条件として、現在のレベルで一定の量のニーズを満たす必要がある。
特に、深層強化学習(dal)は、aiエージェント(ロボットなど)が行動や戦略を整理し最適化し、現在の状態やニーズ(期待されたユーティリティや報酬)に基づいて多様な戦略を開発するのに役立つ。
本稿では,DALに基づく新しい階層型要求駆動学習システムを紹介し,ベイジアンソフトアクター・クリティカル (BSAC) と呼ばれる新しいアプローチによる単一ロボットの実装について検討する。
そして、このトピックをマルチエージェントシステム(MAS)に拡張し、潜在的研究分野と方向性について議論する。
関連論文リスト
- Rationality based Innate-Values-driven Reinforcement Learning [1.8220718426493654]
本来の価値はエージェントの本質的なモチベーションを表しており、それはエージェントの本来の関心や目標を追求する好みを反映している。
これはAIエージェントの固有値駆動(IV)行動を記述するための優れたモデルである。
本稿では,階層型強化学習モデルを提案する。
論文 参考訳(メタデータ) (2024-11-14T03:28:02Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
我々は、より実用的な方法でエンパワーメントを計算するアルゴリズムであるLatent-Predictive Empowerment(LPE)を提案する。
LPEは、スキルと国家間の相互情報の原則的な置き換えである目的を最大化することで、大きなスキルセットを学習する。
論文 参考訳(メタデータ) (2024-10-15T00:41:18Z) - Synthesizing Evolving Symbolic Representations for Autonomous Systems [2.4233709516962785]
本稿では,その経験をスクラッチからPDDL表現に合成し,時間とともに更新できるオープンエンド学習システムを提案する。
a)選択肢を発見する、(b)選択肢を使って環境を探索する、(c)収集した知識を抽象化する、(d)計画。
論文 参考訳(メタデータ) (2024-09-18T07:23:26Z) - I Know How: Combining Prior Policies to Solve New Tasks [17.214443593424498]
マルチタスク強化学習は、継続的に進化し、新しいシナリオに適応できるエージェントを開発することを目的としている。
新しいタスクごとにスクラッチから学ぶことは、実行可能な、あるいは持続可能な選択肢ではない。
我々は、共通の形式を提供する新しいフレームワーク、I Know Howを提案する。
論文 参考訳(メタデータ) (2024-06-14T08:44:51Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
大規模言語モデル(LLM)は、洗練された言語理解と生成能力を備えた人工知能の分野に革命をもたらした。
本稿では,LLMを用いた自律型マルチエージェントシステムが自律性とアライメントの動的相互作用をどのようにバランスさせるかを分析するために,総合的な多次元分類法を提案する。
論文 参考訳(メタデータ) (2023-10-05T16:37:29Z) - Conceptual Framework for Autonomous Cognitive Entities [0.9285295512807729]
本稿では,認知アーキテクチャの新しいフレームワークである自律認知エンティティモデルを紹介する。
このモデルは、大規模言語モデル(LLM)やマルチモーダル生成モデル(MMM)など、最新の生成AI技術の能力を活用するように設計されている。
ACEフレームワークには、障害の処理とアクションの適応のためのメカニズムも組み込まれているため、自律エージェントの堅牢性と柔軟性が向上する。
論文 参考訳(メタデータ) (2023-10-03T15:53:55Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
本稿では,エージェントが獲得した世界モデルに基づいて,本質的な動機付けを決定するための既存の手法について考察する。
提案した統合フレームワークは,学習を改善するために,世界モデルと本質的なモチベーションを用いてエージェントのアーキテクチャを記述する。
論文 参考訳(メタデータ) (2023-01-24T15:13:02Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。