The wave operator representation of quantum and classical dynamics
- URL: http://arxiv.org/abs/2302.13208v4
- Date: Fri, 10 Nov 2023 17:08:30 GMT
- Title: The wave operator representation of quantum and classical dynamics
- Authors: Gerard McCaul, Dmitry V. Zhdanov, Denys I. Bondar
- Abstract summary: We study the little-known wave operator representation of quantum dynamics.
We find it leads to novel semiclassical approximations of both real and imaginary time dynamics.
We argue that the wave operator provides a new perspective that links previously unrelated representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The choice of mathematical representation when describing physical systems is
of great consequence, and this choice is usually determined by the properties
of the problem at hand. Here we examine the little-known wave operator
representation of quantum dynamics, and explore its connection to standard
methods of quantum dynamics. This method takes as its central object the square
root of the density matrix, and consequently enjoys several unusual advantages
over standard representations. By combining this with purification techniques
imported from quantum information, we are able to obtain a number of results.
Not only is this formalism able to provide a natural bridge between phase and
Hilbert space representations of both quantum and classical dynamics, we also
find the waveoperator representation leads to novel semiclassical
approximations of both real and imaginary time dynamics, as well as a
transparent correspondence to the classical limit. This is demonstrated via the
example of quadratic and quartic Hamiltonians, while the potential extensions
of the waveoperator and its application to quantum-classical hybrids is
discussed. We argue that the wave operator provides a new perspective that
links previously unrelated representations, and is a natural candidate model
for scenarios (such as hybrids) in which positivity cannot be otherwise
guaranteed.
Related papers
- Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Free to Harmonic Unitary Transformations in Quantum and Koopman Dynamics [0.0]
We show that an equivalent transformation can be performed for classical systems in the context of Koopman von-Neumann (KvN) dynamics.
We further extend this mapping to dissipative evolutions in both the quantum and classical cases, and show that this mapping imparts an identical time-dependent scaling on the dissipation parameters for both types of dynamics.
arXiv Detail & Related papers (2022-07-19T18:59:01Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Koopman wavefunctions and classical states in hybrid quantum-classical
dynamics [0.0]
We deal with the reversible dynamics of coupled quantum and classical systems.
We exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics.
arXiv Detail & Related papers (2021-08-03T13:19:38Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z) - Nonlinear Description of Quantum Dynamics. Generalized Coherent States [0.0]
In this work it is shown that there is an inherent nonlinear evolution in the dynamics of the so-called generalized coherent states.
The immersion of a classical manifold into the Hilbert space of quantum mechanics is employed.
arXiv Detail & Related papers (2020-09-07T16:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.