論文の概要: Revolutionizing Genomics with Reinforcement Learning Techniques
- arxiv url: http://arxiv.org/abs/2302.13268v2
- Date: Mon, 28 Aug 2023 06:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 00:34:00.106268
- Title: Revolutionizing Genomics with Reinforcement Learning Techniques
- Title(参考訳): 強化学習技術によるゲノムの革新
- Authors: Mohsen Karami, Roohallah Alizadehsani, Khadijeh (Hoda) Jahanian,
Ahmadreza Argha, Iman Dehzangi, Hamid Alinejad-Rokny
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、幅広い問題を解決する強力なツールとして登場した。
RLアルゴリズムは、最小限の人間の監督で経験から学ぶことができる。
RLを使用する大きなメリットの1つは、ラベル付きトレーニングデータ収集に伴うコスト削減である。
- 参考スコア(独自算出の注目度): 0.9087641068861047
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, Reinforcement Learning (RL) has emerged as a powerful tool
for solving a wide range of problems, including decision-making and genomics.
The exponential growth of raw genomic data over the past two decades has
exceeded the capacity of manual analysis, leading to a growing interest in
automatic data analysis and processing. RL algorithms are capable of learning
from experience with minimal human supervision, making them well-suited for
genomic data analysis and interpretation. One of the key benefits of using RL
is the reduced cost associated with collecting labeled training data, which is
required for supervised learning. While there have been numerous studies
examining the applications of Machine Learning (ML) in genomics, this survey
focuses exclusively on the use of RL in various genomics research fields,
including gene regulatory networks (GRNs), genome assembly, and sequence
alignment. We present a comprehensive technical overview of existing studies on
the application of RL in genomics, highlighting the strengths and limitations
of these approaches. We then discuss potential research directions that are
worthy of future exploration, including the development of more sophisticated
reward functions as RL heavily depends on the accuracy of the reward function,
the integration of RL with other machine learning techniques, and the
application of RL to new and emerging areas in genomics research. Finally, we
present our findings and conclude by summarizing the current state of the field
and the future outlook for RL in genomics.
- Abstract(参考訳): 近年、強化学習(Reinforcement Learning, RL)は、意思決定やゲノム学など幅広い問題を解決する強力なツールとして出現している。
過去20年間の生ゲノムデータの指数関数的な成長は、手動分析の能力を超え、自動データ解析と処理への関心が高まっている。
RLアルゴリズムは、人間の監督を最小限にした経験から学ぶことができ、ゲノムデータ分析と解釈に適している。
RLを使用することの大きな利点の1つは、教師あり学習に必要なラベル付きトレーニングデータ収集に伴うコスト削減である。
ゲノミクスにおける機械学習(ML)の応用について多くの研究がなされているが、本調査は遺伝子制御ネットワーク(GRN)、ゲノム組立、配列アライメントなど、さまざまなゲノム研究分野におけるRLの利用に焦点を当てている。
本稿では,RLのゲノム学への応用に関する既存研究の技術的概要を概観し,これらのアプローチの強みと限界を明らかにする。
次に、RLが報酬関数の精度に大きく依存するため、より洗練された報酬関数の開発、RLと他の機械学習技術の統合、新しいゲノム研究分野へのRLの適用など、将来の探索にふさわしい研究の方向性について論じる。
最後に,本研究の成果を概説し,領域の現況とゲノム学におけるRLの将来展望をまとめた。
関連論文リスト
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
大規模言語モデル(LLM)は、マルチタスク学習、サンプル効率、高レベルのタスク計画といった側面において強化学習(RL)を強化するための有望な道として出現する。
本稿では,情報処理装置,報酬設計装置,意思決定装置,ジェネレータの4つの役割を含む,RLにおけるLLMの機能を体系的に分類する構造的分類法を提案する。
論文 参考訳(メタデータ) (2024-03-30T08:28:08Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
進化的強化学習(ERL)は進化的アルゴリズム(EA)と強化学習(RL)を統合して最適化する。
本調査では,ERLの多様な研究分野について概観する。
論文 参考訳(メタデータ) (2024-01-22T14:06:37Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Evolutionary Reinforcement Learning: A Survey [31.112066295496003]
強化学習(Reinforcement Learning、RL)は、エージェントが環境とのインタラクションを通じて累積報酬を最大化するように訓練する機械学習アプローチである。
本稿では、進化強化学習(EvoRL)と呼ばれる、ECをRLに統合するための最先端手法に関する総合的な調査を紹介する。
論文 参考訳(メタデータ) (2023-03-07T01:38:42Z) - Ensemble Reinforcement Learning: A Survey [43.17635633600716]
強化学習(Reinforcement Learning, RL)は, 様々な科学的, 応用的な問題に対処するための, 極めて効果的な手法として登場した。
これに対し, アンサンブル強化学習(ERL)は, RLとアンサンブル学習(EL)の両方の利点を組み合わせた有望なアプローチであり, 広く普及している。
ERLは複数のモデルやトレーニングアルゴリズムを活用して、問題空間を包括的に探索し、強力な一般化能力を持つ。
論文 参考訳(メタデータ) (2023-03-05T09:26:44Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Reinforcement Learning on Graph: A Survey [0.3867363075280544]
我々は、RLモデルの概要とグラフマイニングについて概観し、これらのアルゴリズムをグラフ強化学習(GRL)に一般化する。
本稿では,GRLメソッドの様々な領域にわたる適用について論じるとともに,GRLメソッドのメソッド記述,オープンソースコード,ベンチマークデータセットについて概説する。
今後解決すべき重要な方向性と課題を提案する。
論文 参考訳(メタデータ) (2022-04-13T01:25:58Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
強化学習(RL)は、急速に人気が高まっている。
高いコストと環境との相互作用の危険性のため、RLにはアクセスできない領域がまだ広い範囲にある。
オフラインRLは、以前に収集されたインタラクションの静的データセットからのみ学習するパラダイムである。
論文 参考訳(メタデータ) (2022-03-02T20:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。