論文の概要: Brain subtle anomaly detection based on auto-encoders latent space
analysis : application to de novo parkinson patients
- arxiv url: http://arxiv.org/abs/2302.13593v1
- Date: Mon, 27 Feb 2023 08:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 16:13:04.682973
- Title: Brain subtle anomaly detection based on auto-encoders latent space
analysis : application to de novo parkinson patients
- Title(参考訳): 自己エンコーダ潜時空間解析に基づく脳微妙な異常検出 : de novo Parkinson 患者への応用
- Authors: Nicolas Pinon (MYRIAD), Geoffroy Oudoumanessah (MYRIAD, GIN, STATIFY),
Robin Trombetta (MYRIAD), Michel Dojat (GIN), Florence Forbes (STATIFY),
Carole Lartizien (MYRIAD)
- Abstract要約: パッチベースのオートエンコーダは、潜在空間によって提供される効率的な表現力を持ち、可視的病変検出には良い結果が得られた。
本研究は,多変量解析から派生した2つの代替検出基準を設計し,潜在空間表現から情報をより直接取得する。
パーキンソン病(PD)分類の難しい課題において,2つの指導的学習法と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network-based anomaly detection remains challenging in clinical
applications with little or no supervised information and subtle anomalies such
as hardly visible brain lesions. Among unsupervised methods, patch-based
auto-encoders with their efficient representation power provided by their
latent space, have shown good results for visible lesion detection. However,
the commonly used reconstruction error criterion may limit their performance
when facing less obvious lesions. In this work, we design two alternative
detection criteria. They are derived from multivariate analysis and can more
directly capture information from latent space representations. Their
performance compares favorably with two additional supervised learning methods,
on a difficult de novo Parkinson Disease (PD) classification task.
- Abstract(参考訳): 神経ネットワークに基づく異常検出は、ほとんどまたは全く教師付き情報や、ほとんど見えない脳の病変のような微妙な異常を伴わない臨床応用において依然として困難である。
教師なしの方法のうち,潜在空間による効率的な表現力を有するパッチベースのオートエンコーダは,可視的病変検出に良好な結果を示している。
しかし、一般的に使用されるレコンストラクションエラー基準は、より明白な病変に直面した場合に性能を制限する可能性がある。
本研究では,2つの代替検出基準を設計する。
それらは多変量解析から導出され、より直接的に潜在空間表現から情報を取り込むことができる。
パーキンソン病(PD)分類の難しい課題において,2つの指導的学習法と比較した。
関連論文リスト
- Gravity Network for end-to-end small lesion detection [50.38534263407915]
本稿では,医療画像の小さな病変を特異的に検出するワンステージエンド・ツー・エンド検出器を提案する。
小さな病変の正確な局在化は、その外観と、それらが見つかる様々な背景によって困難を呈する。
この新たなアーキテクチャをGravityNetと呼び、新しいアンカーを重力点と呼ぶ。
論文 参考訳(メタデータ) (2023-09-22T14:02:22Z) - Personalized Anomaly Detection in PPG Data using Representation Learning
and Biometric Identification [3.8036939971290007]
光胸腺造影信号は、継続的なフィットネス・ヘルスモニタリングに有意な可能性を秘めている。
Photoplethysmography信号は、一般的にウェアラブルデバイスから取得され、継続的なフィットネスと健康のモニタリングに重要な可能性を秘めている。
本稿では、表現学習とパーソナライズを利用した2段階のフレームワークを導入し、PSGデータの異常検出性能を改善する。
論文 参考訳(メタデータ) (2023-07-12T18:05:05Z) - One-Class SVM on siamese neural network latent space for Unsupervised
Anomaly Detection on brain MRI White Matter Hyperintensities [0.0]
本稿では,シャムパッチを用いた自動エンコーダによって構築された潜在空間に基づく教師なし異常検出(UAD)手法を提案する。
これまでに報告された2つの最先端手法と同等の性能を示す。
論文 参考訳(メタデータ) (2023-04-17T08:19:23Z) - Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly
Detection [8.737589725372398]
PHANES(Pseudo Healthy Generative Network for Anomaly)と呼ばれる新しい教師なしアプローチを導入する。
本手法は, 異常を回復し, 健康な組織を保存し, 異常領域を偽の健康再建に置き換える機能を有する。
我々は、T1w脳MRIデータセットの脳梗塞検出におけるPHANESの有効性を実証し、最先端(SOTA)法よりも大幅に改善したことを示す。
論文 参考訳(メタデータ) (2023-03-15T08:54:20Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Feature Representation Learning for Robust Retinal Disease Detection
from Optical Coherence Tomography Images [0.0]
眼科画像は、異なる網膜変性疾患を区別する自動化技術で失敗する、同一の外観の病理を含んでいる可能性がある。
本研究では,3つの学習ヘッドを持つ堅牢な疾患検出アーキテクチャを提案する。
2つのOCTデータセットによる実験結果から,提案モデルが既存の最先端モデルよりも精度,解釈可能性,堅牢性に優れ,網膜外網膜疾患の検出に有用であることが示唆された。
論文 参考訳(メタデータ) (2022-06-24T07:59:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Self-Guided Multiple Instance Learning for Weakly Supervised Disease
Classification and Localization in Chest Radiographs [22.473965401043717]
局所化信頼度を高める畳み込みニューラルネットワークのトレーニングのための新しい損失関数を導入する
提案手法で提案する教師は,複数インスタンス学習用データセットの性能向上と,より正確な予測を行う。
論文 参考訳(メタデータ) (2020-09-30T22:19:40Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。