論文の概要: Argument Mining using BERT and Self-Attention based Embeddings
- arxiv url: http://arxiv.org/abs/2302.13906v1
- Date: Mon, 27 Feb 2023 15:52:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-28 15:00:49.001356
- Title: Argument Mining using BERT and Self-Attention based Embeddings
- Title(参考訳): BERTと自己認識型埋め込みを用いた調合マイニング
- Authors: Pranjal Srivastava, Pranav Bhatnagar, Anurag Goel
- Abstract要約: 本稿では,議論マイニングのための新しい手法を提案する。
注意に基づく埋め込みを用いてリンク予測を行い、オンライン談話でよく見られる典型的な議論構造における因果的階層をモデル化する。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Argument mining automatically identifies and extracts the structure of
inference and reasoning conveyed in natural language arguments. To the best of
our knowledge, most of the state-of-the-art works in this field have focused on
using tree-like structures and linguistic modeling. But, these approaches are
not able to model more complex structures which are often found in online
forums and real world argumentation structures. In this paper, a novel
methodology for argument mining is proposed which employs attention-based
embeddings for link prediction to model the causational hierarchies in typical
argument structures prevalent in online discourse.
- Abstract(参考訳): 引数マイニングは自然言語引数で伝達される推論と推論の構造を自動的に識別し抽出する。
私たちの知る限りでは、この分野の最先端の著作のほとんどは、木のような構造と言語モデリングを使うことに集中しています。
しかし、これらのアプローチは、オンラインフォーラムや現実世界の議論構造に見られるような、より複雑な構造をモデル化することはできない。
本稿では,オンライン談話に共通する典型的議論構造における因果階層をモデル化するためにリンク予測のための注意に基づく埋め込みを用いた,議論マイニングのための新しい手法を提案する。
関連論文リスト
- Hidden Holes: topological aspects of language models [1.1172147007388977]
我々は,GPTに基づく大規模言語モデルにおけるトポロジ的構造の発達について,訓練中の深度と時間にわたって検討した。
後者は、すべての自然言語に共通する変化パターンを持つが、合成されたデータがない、よりトポロジ的な複雑さを示すことを示す。
論文 参考訳(メタデータ) (2024-06-09T14:25:09Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
トランスフォーマーベースの言語モデルは効率的だが複雑であり、内部動作を理解することは大きな課題である。
本稿では,長文を生成可能な階層規則を生成する合成CFGのファミリーを紹介する。
我々は、GPTのような生成モデルがこのCFG言語を正確に学習し、それに基づいて文を生成することを実証する。
論文 参考訳(メタデータ) (2023-05-23T04:28:16Z) - Automatic Debate Evaluation with Argumentation Semantics and Natural
Language Argument Graph Networks [2.4861619769660637]
本稿では,議論的議論を自動的に評価する独自のハイブリッド手法を提案する。
その目的のために、議論理論の概念とTransformerベースのアーキテクチャとニューラルグラフネットワークを組み合わせる。
我々は、未探索の自然言語引数の自動解析の新たな事例に基づく有望な結果を得る。
論文 参考訳(メタデータ) (2022-03-28T11:09:07Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
本稿では、文脈経路に沿った2つの議論間の談話関係が、議論の説得力を特定する上で不可欠な要素であることを実証的に示す。
本研究では,文レベルの構造情報を大規模言語モデルから派生した文脈的特徴に注入・融合するDisCOCを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:49:19Z) - High-order Semantic Role Labeling [86.29371274587146]
本稿では,ニューラルセマンティックロールラベリングモデルのための高階グラフ構造を提案する。
これにより、モデルは孤立述語-引数対だけでなく、述語-引数対間の相互作用も明示的に考慮することができる。
CoNLL-2009ベンチマークの7つの言語に対する実験結果から、高次構造学習技術は強力なSRLモデルに有益であることが示された。
論文 参考訳(メタデータ) (2020-10-09T15:33:54Z) - AMPERSAND: Argument Mining for PERSuAsive oNline Discussions [41.06165177604387]
本稿では,オンライン議論フォーラムにおける議論マイニングのための計算モデルを提案する。
我々のアプローチは、議論スレッド内の引数のコンポーネント間の関係を識別することに依存します。
我々のモデルは最近の最先端のアプローチと比較して大幅に改善されている。
論文 参考訳(メタデータ) (2020-04-30T10:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。