論文の概要: Hidden Holes: topological aspects of language models
- arxiv url: http://arxiv.org/abs/2406.05798v1
- Date: Sun, 9 Jun 2024 14:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 17:57:33.332232
- Title: Hidden Holes: topological aspects of language models
- Title(参考訳): 隠れホール:言語モデルのトポロジ的側面
- Authors: Stephen Fitz, Peter Romero, Jiyan Jonas Schneider,
- Abstract要約: 我々は,GPTに基づく大規模言語モデルにおけるトポロジ的構造の発達について,訓練中の深度と時間にわたって検討した。
後者は、すべての自然言語に共通する変化パターンを持つが、合成されたデータがない、よりトポロジ的な複雑さを示すことを示す。
- 参考スコア(独自算出の注目度): 1.1172147007388977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the topology of representation manifolds arising in autoregressive neural language models trained on raw text data. In order to study their properties, we introduce tools from computational algebraic topology, which we use as a basis for a measure of topological complexity, that we call perforation. Using this measure, we study the evolution of topological structure in GPT based large language models across depth and time during training. We then compare these to gated recurrent models, and show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data. The paper presents a detailed analysis of the representation manifolds derived by these models based on studying the shapes of vector clouds induced by them as they are conditioned on sentences from corpora of natural language text. The methods developed in this paper are novel in the field and based on mathematical apparatus that might be unfamiliar to the target audience. To help with that we introduce the minimum necessary theory, and provide additional visualizations in the appendices. The main contribution of the paper is a striking observation about the topological structure of the transformer as compared to LSTM based neural architectures. It suggests that further research into mathematical properties of these neural networks is necessary to understand the operation of large transformer language models. We hope this work inspires further explorations in this direction within the NLP community.
- Abstract(参考訳): 生テキストデータに基づいて学習した自己回帰型ニューラルネットワークモデルにおける表現多様体の位相について検討する。
それらの性質を研究するために、我々は、トポロジ的複雑性の尺度として使用する計算代数的トポロジ(英語版)のツールを導入し、これをパーフォレーション(英語版)と呼ぶ。
本研究では,GPTに基づく大規模言語モデルにおけるトポロジ的構造の発達を,学習中の深さと時間にわたって研究する。
次に、これらをゲート型リカレントモデルと比較し、後者は、すべての自然言語に共通する変化パターンを持つが、合成的に生成されたデータがない、よりトポロジ的な複雑さを示すことを示す。
本稿では,これらのモデルにより導出される表現多様体について,自然言語テキストのコーパスの文に条件付けされたベクトル雲の形状について,詳細な解析を行った。
本研究で開発された手法は,対象者には馴染みのない数学的手法を基礎として,この分野における斬新な手法である。
そのために最低限必要な理論を導入し、付録に付加的な視覚化を提供する。
この論文の主な貢献は、LSTMに基づくニューラルネットワークと比較して、トランスのトポロジカルな構造に関する顕著な観察である。
これらのニューラルネットワークの数学的性質に関するさらなる研究は、大きなトランスフォーマー言語モデルの操作を理解するために必要である。
この取り組みがNLPコミュニティ内のこの方向をさらに探究することを期待しています。
関連論文リスト
- Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning [4.910937238451485]
トランスフォーマーモデルは、自然言語処理やコンピュータビジョンといった様々な領域において、一貫して顕著な成果を上げてきた。
これらのモデルをよりよく理解するための継続的な研究努力にもかかわらず、この分野はいまだに包括的な理解を欠いている。
画像やテキスト情報とは異なり、時系列データは解釈し分析することがより困難である。
論文 参考訳(メタデータ) (2024-10-17T17:32:35Z) - Topological Representational Similarity Analysis in Brains and Beyond [15.417809900388262]
この論文では、神経表現の幾何学的および位相的特性を組み合わせた新しいフレームワークであるトポロジカルRSA(tRSA)を紹介する。
tRSAは非線型単調変換を表現上の相似性に適用し、中間スケールの幾何学を維持しながら局所位相を強調する。
結果として生じる地形行列は、ノイズや個々の慣用性に頑健なモデル比較を可能にする。
論文 参考訳(メタデータ) (2024-08-21T19:02:00Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
トランスフォーマーベースの言語モデルは効率的だが複雑であり、内部動作を理解することは大きな課題である。
本稿では,長文を生成可能な階層規則を生成する合成CFGのファミリーを紹介する。
我々は、GPTのような生成モデルがこのCFG言語を正確に学習し、それに基づいて文を生成することを実証する。
論文 参考訳(メタデータ) (2023-05-23T04:28:16Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
言語モデルは、NLPのワークホースとして登場し、ますます流動的な生成能力を示している。
我々は、多くの次元にまたがる明瞭さの欠如を観察し、研究者が形成する仮説に影響を及ぼす。
本稿では,構文研究における様々な研究課題の意義について概説する。
論文 参考訳(メタデータ) (2021-10-17T18:25:23Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Causal Abstractions of Neural Networks [9.291492712301569]
本稿では,テキストの抽象の形式的理論に基づく新しい構造解析手法を提案する。
本稿では,Multiply Quantified Natural Language Inference (MQNLI) コーパスで学習したニューラルネットワークの解析に本手法を適用した。
論文 参考訳(メタデータ) (2021-06-06T01:07:43Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
モデル選択の結果、機械が生成したテキストに現れるアーティファクトの研究は、新しい研究領域である。
我々は、モデリング選択が検出可能なアーティファクトを生成テキストに残すかどうかを確認するために、広範囲な診断テストを実行する。
我々の重要な発見は、厳密な実験によって裏付けられ、そのような成果物が存在することと、生成されたテキストのみを観察することで異なるモデリング選択を推測できることである。
論文 参考訳(メタデータ) (2020-04-13T21:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。