論文の概要: Decentralised construction of a global coordinate system in a large
swarm of minimalistic robots
- arxiv url: http://arxiv.org/abs/2302.14587v1
- Date: Tue, 28 Feb 2023 14:14:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 16:26:51.373988
- Title: Decentralised construction of a global coordinate system in a large
swarm of minimalistic robots
- Title(参考訳): ミニマリズムロボット群における大域座標系の分散的構成
- Authors: Michal Pluhacek, Simon Garnier, Andreagiovanni Reina
- Abstract要約: 本研究では,最小主義的エラー発生ロボット群における位置自己認識を可能にするアルゴリズムを提案する。
受信メッセージのベアリングを計測できないにもかかわらず、アルゴリズムを実行しているロボットは、定期的に配置されたSwarm内の位置を計算することができる。
我々のソリューションは最先端のアルゴリズムよりも少ない要件を持ち、総合的なノイズフィルタリング機構を含んでいる。
- 参考スコア(独自算出の注目度): 0.8701566919381223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective intelligence and autonomy of robot swarms can be improved by
enabling the individual robots to become aware they are the constituent units
of a larger whole and what is their role. In this study, we present an
algorithm to enable positional self-awareness in a swarm of minimalistic
error-prone robots which can only locally broadcast messages and estimate the
distance from their neighbours. Despite being unable to measure the bearing of
incoming messages, the robots running our algorithm can calculate their
position within a swarm deployed in a regular formation. We show through
experiments with up to 200 Kilobot robots that such positional self-awareness
can be employed by the robots to create a shared coordinate system and
dynamically self-assign location-dependent tasks. Our solution has fewer
requirements than state-of-the-art algorithms and contains collective
noise-filtering mechanisms. Therefore, it has an extended range of robotic
platforms on which it can run. All robots are interchangeable, run the same
code, and do not need any prior knowledge. Through our algorithm, robots reach
collective synchronisation, and can autonomously become self-aware of the
swarm's spatial configuration and their position within it.
- Abstract(参考訳): ロボット集団の集団知性と自律性は、個々のロボットがより大きな全体の構成単位であり、その役割を認識できるようにすることで改善することができる。
本研究では,メッセージをローカルにブロードキャストし,近隣からの距離を推定できる最小限のエラー発生ロボット群において,位置自覚を可能にするアルゴリズムを提案する。
受信メッセージのベアリングを計測できないにもかかわらず、アルゴリズムを実行しているロボットは、定期的に配置されたSwarm内の位置を計算することができる。
最大200キロボットロボットによる実験により,ロボットが位置自己認識を利用して共有座標系を作成し,動的に位置依存タスクを割り当てることを示す。
我々のソリューションは最先端のアルゴリズムよりも少ない要件を持ち、総合的なノイズフィルタリング機構を含んでいる。
そのため、動作可能な幅広いロボットプラットフォームを備えています。
すべてのロボットは交換可能で、同じコードを実行し、事前の知識は必要ない。
我々のアルゴリズムにより、ロボットは集団同期に到達し、Swarmの空間構成とその位置を自律的に認識することができる。
関連論文リスト
- Know your limits! Optimize the robot's behavior through self-awareness [11.021217430606042]
最近の人間ロボット模倣アルゴリズムは、高精度な人間の動きを追従することに焦点を当てている。
本稿では,ロボットが参照を模倣する際の動作を予測できるディープラーニングモデルを提案する。
我々のSAW(Self-AWare Model)は、転倒確率、基準運動への固執、滑らかさといった様々な基準に基づいて、潜在的なロボットの挙動をランク付けする。
論文 参考訳(メタデータ) (2024-09-16T14:14:58Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - Hearing the shape of an arena with spectral swarm robotics [0.0]
ロボットが隣人に情報を拡散してラプラシアン演算子をエミュレートするスペクトルスウォームロボットを紹介した。
本研究では,アリーナ形状のワンショット分類による課題条件下でのスペクトルスウォームロボティクスの検証を行った。
スペクトル法はロボティクスを超えて、交通や群衆といった様々な性質のエージェントの群れを分析し、調整することができる。
論文 参考訳(メタデータ) (2024-03-25T19:50:07Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Correspondence learning between morphologically different robots via
task demonstrations [2.1374208474242815]
形態の異なる2つ以上のロボットの対応関係を学習する手法を提案する。
本提案手法では,関節制御付き固定ベースマニピュレータロボットと差動駆動移動ロボットとが対応可能である。
本研究では,実際のマニピュレータロボットとシミュレートされた移動ロボットとの対応学習の概念実証を行う。
論文 参考訳(メタデータ) (2023-10-20T12:42:06Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
四足歩行ロボットのための汎用ロコモーション(GenLoco)コントローラを訓練するためのフレームワークを提案する。
本フレームワークは,多種多様な四足歩行ロボットに展開可能な汎用ロコモーションコントローラを合成する。
我々のモデルは、より一般的な制御戦略を取得し、新しいシミュレーションロボットや実世界のロボットに直接移行できることを示す。
論文 参考訳(メタデータ) (2022-09-12T15:14:32Z) - Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human
Supervision [72.4735163268491]
ロボットの商業的および産業的な展開は、実行中にリモートの人間のテレオペレーターにフォールバックすることが多い。
我々は対話型フリートラーニング(Interactive Fleet Learning, IFL)の設定を定式化し、複数のロボットが対話型クエリを行い、複数の人間スーパーバイザーから学習する。
IFLアルゴリズムのファミリーであるFleet-DAggerを提案し、新しいFleet-DAggerアルゴリズムをシミュレーションで4つのベースラインと比較する。
論文 参考訳(メタデータ) (2022-06-29T01:23:57Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Minimizing Robot Navigation-Graph For Position-Based Predictability By
Humans [20.13307800821161]
人間とロボットが同じ空間を移動しながら独自のタスクを遂行している状況では、予測可能な経路が不可欠である。
ロボットの数が増加するにつれて、人間がロボットの進路を予測するための認知的努力は不可能になる。
そこで本研究では,位置に基づく予測可能性のために,ロボットのナビゲーショングラフを最小化することを提案する。
論文 参考訳(メタデータ) (2020-10-28T22:09:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。