Meta-Learning with Adaptive Weighted Loss for Imbalanced Cold-Start
Recommendation
- URL: http://arxiv.org/abs/2302.14640v2
- Date: Mon, 21 Aug 2023 08:37:37 GMT
- Title: Meta-Learning with Adaptive Weighted Loss for Imbalanced Cold-Start
Recommendation
- Authors: Minchang Kim, Yongjin Yang, Jung Hyun Ryu, Taesup Kim
- Abstract summary: We propose a novel sequential recommendation framework based on gradient-based meta-learning.
Our work is the first to tackle the impact of imbalanced ratings in cold-start sequential recommendation scenarios.
- Score: 4.379304291229695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommenders have made great strides in capturing a user's
preferences. Nevertheless, the cold-start recommendation remains a fundamental
challenge as they typically involve limited user-item interactions for
personalization. Recently, gradient-based meta-learning approaches have emerged
in the sequential recommendation field due to their fast adaptation and
easy-to-integrate abilities. The meta-learning algorithms formulate the
cold-start recommendation as a few-shot learning problem, where each user is
represented as a task to be adapted. While meta-learning algorithms generally
assume that task-wise samples are evenly distributed over classes or values,
user-item interactions in real-world applications do not conform to such a
distribution (e.g., watching favorite videos multiple times, leaving only
positive ratings without any negative ones). Consequently, imbalanced user
feedback, which accounts for the majority of task training data, may dominate
the user adaptation process and prevent meta-learning algorithms from learning
meaningful meta-knowledge for personalized recommendations. To alleviate this
limitation, we propose a novel sequential recommendation framework based on
gradient-based meta-learning that captures the imbalanced rating distribution
of each user and computes adaptive loss for user-specific learning. Our work is
the first to tackle the impact of imbalanced ratings in cold-start sequential
recommendation scenarios. Through extensive experiments conducted on real-world
datasets, we demonstrate the effectiveness of our framework.
Related papers
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - RESUS: Warm-Up Cold Users via Meta-Learning Residual User Preferences in
CTR Prediction [14.807495564177252]
Click-Through Rate (CTR) prediction on cold users is a challenging task in recommender systems.
We propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users.
Our approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.
arXiv Detail & Related papers (2022-10-28T11:57:58Z) - Comprehensive Fair Meta-learned Recommender System [39.04926584648665]
We propose a comprehensive fair meta-learning framework, named CLOVER, for ensuring the fairness of meta-learned recommendation models.
Our framework offers a generic training paradigm that is applicable to different meta-learned recommender systems.
arXiv Detail & Related papers (2022-06-09T22:48:35Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Cold-start Sequential Recommendation via Meta Learner [10.491428090228768]
We propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation.
Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user.
arXiv Detail & Related papers (2020-12-10T05:23:13Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
Reinforcement learning has shown great promise in optimizing long-term user interest in recommender systems.
Existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy.
We propose a meta-level model-based reinforcement learning approach for fast user adaptation.
arXiv Detail & Related papers (2020-12-04T08:58:35Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
We propose a new active learning approach that jointly optimize the active learning system (training efficiently) and the user (receiving useful instances)
We study our approach in an educational application, which particularly benefits from this technique as the system needs to rapidly learn to predict the appropriateness of an exercise to a particular user.
We evaluate multiple learning strategies and user types with data from real users and find that our joint approach better satisfies both objectives when alternative methods lead to many unsuitable exercises for end users.
arXiv Detail & Related papers (2020-05-09T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.