Detection of single ions in a nanoparticle coupled to a fiber cavity
- URL: http://arxiv.org/abs/2303.00017v1
- Date: Tue, 28 Feb 2023 19:00:04 GMT
- Title: Detection of single ions in a nanoparticle coupled to a fiber cavity
- Authors: Chetan Deshmukh and Eduardo Beattie and Bernardo Casabone and Samuele
Grandi and Diana Serrano and Alban Ferrier and Philippe Goldner and David
Hunger and Hugues de Riedmatten
- Abstract summary: We present the Purcell-enhanced detection of single solid-state ions in erbium-doped nanoparticles placed in a fiber cavity.
The ions are confined in a volume two orders of magnitude smaller than in previous realizations, increasing the probability of finding ions separated only by a few nanometers.
Our fully fiber-integrated system is an important step towards the realization of the initially envisioned quantum hardware.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many quantum information protocols require the storage and manipulation of
information over long times, and its exchange between nodes of a quantum
network across long distances. Implementing these protocols requires an
advanced quantum hardware, featuring, for example, a register of long-lived and
interacting qubits with an efficient optical interface in the telecommunication
band. Here we present the Purcell-enhanced detection of single solid-state ions
in erbium-doped nanoparticles placed in a fiber cavity, emitting photons at
1536 nm. The open-access design of the cavity allows for complete tunability
both in space and frequency, selecting individual particles and ions. The ions
are confined in a volume two orders of magnitude smaller than in previous
realizations, increasing the probability of finding ions separated only by a
few nanometers which could then interact. We report the detection of individual
spectral features presenting saturation of the emission count rate and
linewidth, as expected for two-level systems. We also report an uncorrected
$g^{(2)} \left ( 0 \right )$ of 0.24(5) for the emitted field, confirming the
presence of a single emitter. Our fully fiber-integrated system is an important
step towards the realization of the initially envisioned quantum hardware.
Related papers
- Realization of a crosstalk-free multi-ion node for long-distance quantum networking [0.0]
Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes.
In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits.
We report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node.
arXiv Detail & Related papers (2024-05-22T05:58:37Z) - Frequency tunable, cavity-enhanced single erbium quantum emitter in the
telecom band [9.184620121974449]
Single quantum emitters embedded in solid-state hosts are an ideal platform for realizing quantum information processors and quantum network nodes.
Here we demonstrate for the first time linear Stark tuning of the emission frequency of a single Er$3+$ ion.
arXiv Detail & Related papers (2023-04-28T08:24:48Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Single Photon Sources with Near Unity Collection Efficiencies by
Deterministic Placement of Quantum Dots in Nanoantennas [3.6654842121350257]
We present a method for directly locating single free-standing quantum emitters with high spatial accuracy.
We also employ non-blinking, high quantum yield quantum dots (QDs) for on-demand single-photon emission.
Taken together this approach results in a record-high collection efficiency of 85% of the single photons into a low NA of 0.5.
arXiv Detail & Related papers (2020-05-23T15:05:23Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.