論文の概要: ROCO: A Roundabout Traffic Conflict Dataset
- arxiv url: http://arxiv.org/abs/2303.00563v2
- Date: Thu, 2 Mar 2023 02:26:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 17:12:39.230038
- Title: ROCO: A Roundabout Traffic Conflict Dataset
- Title(参考訳): ROCO: 交通紛争の総括データ
- Authors: Depu Meng, Owen Sayer, Rusheng Zhang, Shengyin Shen, Houqiang Li,
Henry X. Liu
- Abstract要約: 実世界のトラフィック競合データセットであるROCOを導入し分析する。
データはミシガン州アンアーバーのセント・セントとW・エルズワースの交差点にある2車線のラウンドアラウンドで収集される。
2021年8月から2021年10月までの合計557回の交通事故と17回の交通事故が収集された。
- 参考スコア(独自算出の注目度): 65.55451440776098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic conflicts have been studied by the transportation research community
as a surrogate safety measure for decades. However, due to the rarity of
traffic conflicts, collecting large-scale real-world traffic conflict data
becomes extremely challenging. In this paper, we introduce and analyze ROCO - a
real-world roundabout traffic conflict dataset. The data is collected at a
two-lane roundabout at the intersection of State St. and W. Ellsworth Rd. in
Ann Arbor, Michigan. We use raw video dataflow captured from four fisheye
cameras installed at the roundabout as our input data source. We adopt a
learning-based conflict identification algorithm from video to find potential
traffic conflicts, and then manually label them for dataset collection and
annotation. In total 557 traffic conflicts and 17 traffic crashes are collected
from August 2021 to October 2021. We provide trajectory data of the traffic
conflict scenes extracted using our roadside perception system. Taxonomy based
on traffic conflict severity, reason for the traffic conflict, and its effect
on the traffic flow is provided. With the traffic conflict data collected, we
discover that failure to yield to circulating vehicles when entering the
roundabout is the largest contributing reason for traffic conflicts. ROCO
dataset will be made public in the short future.
- Abstract(参考訳): 交通の衝突は交通研究コミュニティによって数十年間、代理安全対策として研究されてきた。
しかし、交通紛争の激しさから、大規模な実世界の交通紛争データ収集は極めて困難である。
本稿では,実世界の交通紛争データセットであるROCOを紹介し,分析する。
データはミシガン州アンアーバーのセント・セントとW・エルズワースの交差点にある2車線のラウンドアラウンドで収集される。
ラウンドアバウンドに設置された4台の魚眼カメラから取得した生映像データフローを入力データソースとして利用する。
ビデオから学習に基づくコンフリクト識別アルゴリズムを採用し、潜在的なトラフィックコンフリクトを見つけ、データセットの収集とアノテーションのために手動でラベル付けします。
2021年8月から2021年10月にかけて、557件の交通紛争と17件の交通事故が収集された。
道路側知覚システムを用いて抽出したトラヒックコンフリクトシーンの軌跡データを提供する。
交通紛争の重大性、交通紛争の原因、交通流への影響に基づく分類法が提供される。
交通コンフリクトデータを収集した結果、ラウンドアバウンドに入る際に循環車両に収まらないことが交通コンフリクトの最大の原因であることが判明した。
ROCOデータセットは、短期的に公開される予定である。
関連論文リスト
- XTraffic: A Dataset Where Traffic Meets Incidents with Explainability and More [38.092415845567345]
トラヒックとインシデントという2つの非常に相関の深いトラックで研究が行われている。
XTrafficデータセットには、トラフィック、すなわち、トラフィックフロー、車線占有率、平均車両速度の時系列インデックスが含まれている。
各ノードは、レーンの詳細な物理ポリシーレベルのメタ属性を含む。
論文 参考訳(メタデータ) (2024-07-16T08:16:01Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous
Driving [42.69638782267657]
本稿では、インドにおける非構造化シナリオにおけるトラフィックパターンをキャプチャする、新しい複雑なトラフィックデータセットMETEORを提案する。
METEORは1000分以上のビデオクリップと、エゴ車軌道を持つ200万以上の注釈付きフレームと、周囲の車両や交通機関のための1300万以上のバウンディングボックスで構成されている。
我々は,オブジェクト検出と行動予測アルゴリズムの性能を評価するために,新しいデータセットを用いた。
論文 参考訳(メタデータ) (2021-09-16T01:01:55Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Interaction Detection Between Vehicles and Vulnerable Road Users: A Deep
Generative Approach with Attention [9.442285577226606]
交差点における相互作用検出のための条件生成モデルを提案する。
道路利用者の行動の連続性に関する膨大な映像データを自動解析することを目的としています。
モデルの有効性は実世界のデータセットでテストすることによって検証された。
論文 参考訳(メタデータ) (2021-05-09T10:03:55Z) - A Flow Base Bi-path Network for Cross-scene Video Crowd Understanding in
Aerial View [93.23947591795897]
本稿では,これらの課題に対処し,ドローンから収集した視覚的データから参加者を自動的に理解する。
クロスシーンテストで発生する背景雑音を軽減するために, 二重ストリーム群カウントモデルを提案する。
極暗環境下での集団密度推定問題に対処するために,ゲームグランドセフトオートV(GTAV)によって生成された合成データを導入する。
論文 参考訳(メタデータ) (2020-09-29T01:48:24Z) - Defining Traffic States using Spatio-temporal Traffic Graphs [9.861775841965386]
本稿では,交通グラフを用いた交差点の空間領域の交通状況の把握手法を提案する。
これらのトラフィックグラフが時間とともに異なるトラフィック状態を示す方法 — a) 渋滞が形成されている(クランプ)、あるいは、渋滞が分散している(アンクランプ)、c) トラフィックが正常に流れている(中性)。
論文 参考訳(メタデータ) (2020-07-27T17:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。