Prediction of SLAM ATE Using an Ensemble Learning Regression Model and
1-D Global Pooling of Data Characterization
- URL: http://arxiv.org/abs/2303.00616v1
- Date: Wed, 1 Mar 2023 16:12:47 GMT
- Title: Prediction of SLAM ATE Using an Ensemble Learning Regression Model and
1-D Global Pooling of Data Characterization
- Authors: Islam Ali, Bingqing (Selina) Wan, Hong Zhang
- Abstract summary: We introduce a novel method for predicting SLAM localization error based on the characterization of raw sensor inputs.
The proposed method relies on using a random forest regression model trained on 1-D global pooled features that are generated from characterized raw sensor data.
The paper also studies the impact of 12 different 1-D global pooling functions on regression quality, and the superiority of 1-D global averaging is quantitatively proven.
- Score: 3.4399698738841553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robustness and resilience of simultaneous localization and mapping (SLAM) are
critical requirements for modern autonomous robotic systems. One of the
essential steps to achieve robustness and resilience is the ability of SLAM to
have an integrity measure for its localization estimates, and thus, have
internal fault tolerance mechanisms to deal with performance degradation. In
this work, we introduce a novel method for predicting SLAM localization error
based on the characterization of raw sensor inputs. The proposed method relies
on using a random forest regression model trained on 1-D global pooled features
that are generated from characterized raw sensor data. The model is validated
by using it to predict the performance of ORB-SLAM3 on three different datasets
running on four different operating modes, resulting in an average prediction
accuracy of up to 94.7\%. The paper also studies the impact of 12 different 1-D
global pooling functions on regression quality, and the superiority of 1-D
global averaging is quantitatively proven. Finally, the paper studies the
quality of prediction with limited training data, and proves that we are able
to maintain proper prediction quality when only 20 \% of the training examples
are used for training, which highlights how the proposed model can optimize the
evaluation footprint of SLAM systems.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
This study explores model adaptation and generalization by utilizing synthetic data.
We employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity.
Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty.
arXiv Detail & Related papers (2024-05-03T10:05:31Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST) [1.8047694351309207]
We develop a statistical framework for model predictions based on transfer learning, called RECaST.
We mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models.
We examine our method's performance in a simulation study and in an application to real hospital data.
arXiv Detail & Related papers (2022-11-29T19:39:47Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Stable Prediction with Model Misspecification and Agnostic Distribution
Shift [41.26323389341987]
In machine learning algorithms, two main assumptions are required to guarantee performance.
One is that the test data are drawn from the same distribution as the training data, and the other is that the model is correctly specified.
Under model misspecification, distribution shift between training and test data leads to inaccuracy of parameter estimation and instability of prediction across unknown test data.
We propose a novel Decorrelated Weighting Regression (DWR) algorithm which jointly optimize a variable decorrelation regularizer and a weighted regression model.
arXiv Detail & Related papers (2020-01-31T08:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.