The Thermodynamic Limit of Spin Systems on Random Graphs
- URL: http://arxiv.org/abs/2303.00731v2
- Date: Tue, 16 Jan 2024 15:25:19 GMT
- Title: The Thermodynamic Limit of Spin Systems on Random Graphs
- Authors: Amy Searle and Joseph Tindall
- Abstract summary: We formulate a general, continuous description of quantum spin systems in thermal equilibrium.
We derive a closed set of coupled non-linear Fredholm integral equations which govern the properties of the system.
We analyse these equations for both quantum and classical spin systems, recovering known results and providing novel analytical solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We utilise the graphon--a continuous mathematical object which represents the
limit of convergent sequences of dense graphs--to formulate a general,
continuous description of quantum spin systems in thermal equilibrium when the
average co-ordination number grows extensively in the system size.
Specifically, we derive a closed set of coupled non-linear Fredholm integral
equations which govern the properties of the system. The graphon forms the
kernel of these equations and their solution yields exact expressions for the
macroscopic observables in the system in the thermodynamic limit. We analyse
these equations for both quantum and classical spin systems, recovering known
results and providing novel analytical solutions for a range of more complex
cases. We supplement this with controlled, finite-size numerical calculations
using Monte-Carlo and Tensor Network methods, showing their convergence towards
our analytical results with increasing system size.
Related papers
- Quantum stochastic thermodynamics in the mesoscopic-leads formulation [0.0]
We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems.
Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes.
arXiv Detail & Related papers (2024-04-09T16:17:48Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Bootstrapping the gap in quantum spin systems [0.7106986689736826]
We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements.
The method can be applied to any quantum mechanical system with a local Hamiltonian.
arXiv Detail & Related papers (2022-11-07T19:07:29Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Self-consistent microscopic derivation of Markovian master equations for
open quadratic quantum systems [0.0]
We provide a rigorous construction of Markovian master equations for a wide class of quantum systems.
We show that, for non-degenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes of the system.
We also address the particle and energy current flowing through the system in a minimal two-bath scheme and find that they hold the structure of Landauer's formula.
arXiv Detail & Related papers (2021-01-22T19:25:17Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Classical Models of Entanglement in Monitored Random Circuits [0.0]
We show the evolution of entanglement entropy in quantum circuits composed of Haar-random gates and projective measurements.
We also establish a Markov model for the evolution of the zeroth R'enyi entropy and demonstrate that, in one dimension and in the limit of large local dimension, it coincides with the corresponding second-R'enyi-entropy model.
arXiv Detail & Related papers (2020-04-14T18:00:14Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.