Self-consistent microscopic derivation of Markovian master equations for
open quadratic quantum systems
- URL: http://arxiv.org/abs/2101.09303v2
- Date: Mon, 17 May 2021 15:00:32 GMT
- Title: Self-consistent microscopic derivation of Markovian master equations for
open quadratic quantum systems
- Authors: Antonio D'Abbruzzo and Davide Rossini
- Abstract summary: We provide a rigorous construction of Markovian master equations for a wide class of quantum systems.
We show that, for non-degenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes of the system.
We also address the particle and energy current flowing through the system in a minimal two-bath scheme and find that they hold the structure of Landauer's formula.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide a rigorous construction of Markovian master equations for a wide
class of quantum systems that encompass quadratic models of finite size,
linearly coupled to an environment modeled by a set of independent thermal
baths. Our theory can be applied for both fermionic and bosonic models in any
number of physical dimensions, and does not require any particular spatial
symmetry of the global system. We show that, for non-degenerate systems under a
full secular approximation, the effective Lindblad operators are the normal
modes of the system, with coupling constants that explicitly depend on the
transformation matrices that diagonalize the Hamiltonian. Both the dynamics and
the steady-state (guaranteed to be unique) properties can be obtained with a
polynomial amount of resources in the system size. We also address the particle
and energy current flowing through the system in a minimal two-bath scheme and
find that they hold the structure of Landauer's formula, being
thermodynamically consistent.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Tensor product random matrix theory [39.58317527488534]
We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
arXiv Detail & Related papers (2024-04-16T21:40:57Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - A quantum-classical decomposition of Gaussian quantum environments: a
stochastic pseudomode model [0.8258451067861933]
We show that the effect of a Bosonic environment linearly coupled to a quantum system can be simulated by a Gaussian Lindblad master equation.
For a subset of rational spectral densities, all parameters are explicitly specified without the need of any fitting procedure.
arXiv Detail & Related papers (2023-01-18T14:17:17Z) - Bootstrapping the gap in quantum spin systems [0.7106986689736826]
We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements.
The method can be applied to any quantum mechanical system with a local Hamiltonian.
arXiv Detail & Related papers (2022-11-07T19:07:29Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Hilbert space fragmentation in a 2D quantum spin system with subsystem
symmetries [0.0]
subsystem symmetries are associated to conserved magnetization along rows and columns of a square lattice.
We show that subsystem symmetries alone cannot account for such a number of inert states, even with infinite-range interactions.
arXiv Detail & Related papers (2021-07-20T18:00:49Z) - Exact description of quantum stochastic models as quantum resistors [0.0]
We study the transport properties of generic out-of-equilibrium quantum systems connected to fermionic reservoirs.
Our method allows a simple and compact derivation of the current for a large class of systems showing diffusive/ohmic behavior.
We show that these QSHs exhibit diffusive regimes which are encoded in the Keldysh component of the single particle Green's function.
arXiv Detail & Related papers (2021-06-28T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.