論文の概要: DOTE: Rethinking (Predictive) WAN Traffic Engineering
- arxiv url: http://arxiv.org/abs/2303.00735v1
- Date: Wed, 1 Mar 2023 18:50:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-02 13:34:12.781450
- Title: DOTE: Rethinking (Predictive) WAN Traffic Engineering
- Title(参考訳): DOTE:(予測的な)WANトラフィックエンジニアリングの再考
- Authors: Yarin Perry (1), Felipe Vieira Frujeri (2), Chaim Hoch (1), Srikanth
Kandula (2), Ishai Menache (2), Michael Schapira (1), Aviv Tamar (3) ((1)
Hebrew University of Jerusalem, (2) Microsoft Research, (3) Technion)
- Abstract要約: 本稿では,交通需要に関する歴史的データのみを用いて,広域ネットワーク(WAN)における交通工学の新しい設計点を提案する。
最適化を利用する本手法は、よく研究された理論モデルにおいて、大域的最適に確実に収束する。
実世界のトラフィックとネットワークトポロジに関する実証的な評価は、我々のアプローチのTE品質が(実現不可能な)オラクルの品質とほぼ一致し、これまで提案されていたアプローチよりも優れており、ランタイムを大幅に低下させています。
- 参考スコア(独自算出の注目度): 1.0784736928162042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a new design point for traffic engineering on wide-area networks
(WANs): directly optimizing traffic flow on the WAN using only historical data
about traffic demands. Doing so obviates the need to explicitly estimate, or
predict, future demands. Our method, which utilizes stochastic optimization,
provably converges to the global optimum in well-studied theoretical models. We
employ deep learning to scale to large WANs and real-world traffic. Our
extensive empirical evaluation on real-world traffic and network topologies
establishes that our approach's TE quality almost matches that of an
(infeasible) omniscient oracle, outperforming previously proposed approaches,
and also substantially lowers runtimes.
- Abstract(参考訳): 広域ネットワーク(WAN)における交通工学の新しい設計点について検討し,交通需要に関する履歴データのみを用いて,WAN上での交通流を直接最適化する。
これにより、将来の要求を明示的に見積もるか、予測する必要がなくなる。
本手法は確率的最適化を応用し,十分に検討された理論モデルにおいて大域的最適に収束する。
私たちは大規模なWANや現実世界のトラフィックにスケールするためにディープラーニングを採用しています。
実世界のトラフィックとネットワークトポロジに対する我々の広範な実証的な評価は、我々のアプローチのTE品質が(実現不可能な)全能のオラクルの品質とほぼ一致し、これまで提案されていたアプローチよりも優れ、ランタイムを大幅に低下させることを証明している。
関連論文リスト
- Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
本稿では、畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)アーキテクチャを融合して、トラフィックフローのダイナミクスを予測する革新的なソリューションを提案する。
本研究の重要な成果は,小規模な交通システムを対象としたシミュレーションから,大規模交通システムのトレーニングデータをサンプリングできることである。
論文 参考訳(メタデータ) (2024-03-27T15:57:42Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
次世代ネットワークは、トラフィックダイナミクスに基づいたネットワーク構成を自動化し、適応的に調整する必要がある。
交通政策を決定する伝統的な手法は、通常は手作りのプログラミング最適化とアルゴリズムに基づいている。
我々は適応的なトラフィックルーティングのための深層強化学習(DRL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-02-07T01:48:29Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic
Flow Patterns Using a Graph Convolutional Neural Network [1.3706331473063877]
本稿では,交通ネットワークのトラフィックフローパターンを学習する新しいデータ駆動手法を提案する。
我々は、グラフ畳み込みニューラルネットワーク(GCNN)と呼ばれるニューラルネットワークベースのフレームワークを開発し、その問題を解決する。
モデルのトレーニングが完了すると、大規模ネットワークのトラフィックフローを即座に決定できる。
論文 参考訳(メタデータ) (2022-02-21T19:45:15Z) - Domain Adversarial Spatial-Temporal Network: A Transferable Framework
for Short-term Traffic Forecasting across Cities [9.891703123090528]
本稿では,新しい移動可能な交通予測フレームワークDASTNetを提案する。
DASTNetは複数のソースネットワーク上で事前トレーニングされ、ターゲットネットワークのトラフィックデータに微調整される。
3つのベンチマークデータセット上で、最先端のベースラインメソッドを一貫して上回る。
論文 参考訳(メタデータ) (2022-02-08T03:58:39Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
グラフニューラルネットワーク(GNN)と連続学習(CL)に基づくストリームトラフィックフロー予測フレームワークであるTrafficStreamを提案する。
新たなトラフィックパターンをマイニングするために,JS-divergence に基づくアルゴリズムを提案する。
モデルの有効性と有効性を検証するために,ストリーミングトラフィックデータセットを構築した。
論文 参考訳(メタデータ) (2021-06-11T09:42:37Z) - Adaptive Inference through Early-Exit Networks: Design, Challenges and
Directions [80.78077900288868]
初期のネットワークの設計手法をその重要コンポーネントに分解し、各コンポーネントの最近の進歩を調査する。
我々は、他の効率的な推論ソリューションと早期に競合する立場をとり、この分野の研究における現在の課題と最も有望な今後の方向性についての洞察を提供する。
論文 参考訳(メタデータ) (2021-06-09T12:33:02Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。