Efficient Arbitrated Quantum Digital Signature with Multi-Receiver Verification
- URL: http://arxiv.org/abs/2406.07824v1
- Date: Wed, 12 Jun 2024 02:46:54 GMT
- Title: Efficient Arbitrated Quantum Digital Signature with Multi-Receiver Verification
- Authors: Siyu Xiong, Bangying Tang, Hui Han, Jinquan Huang, Mingqiang Bai, Fangzhao Li, Wanrong Yu Zhiwen Mo, Bo Liu,
- Abstract summary: Quantum digital signature is used to authenticate the identity of the signer with theoretical security.
In traditional multi-receiver quantum digital signature schemes without an arbitrater, the transferability of one-to-one signature is always required to achieve unforgeability.
We propose an arbitrated quantum digital signature scheme, in which the signature can be verified by multiple receivers simultaneously.
- Score: 3.6788660756664773
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum digital signature is used to authenticate the identity of the signer with information theoretical security, while providing non-forgery and non-repudiation services. In traditional multi-receiver quantum digital signature schemes without an arbitrater, the transferability of one-to-one signature is always required to achieve unforgeability, with complicated implementation and heavy key consumption. In this article, we propose an arbitrated quantum digital signature scheme, in which the signature can be verified by multiple receivers simultaneously, and meanwhile, the transferability of the signature is still kept. Our scheme can be simplified performed to various quantum secure networks, due to the proposed efficient signature calculation procedure with low secure key consumption and low computation complexity, by employing one-time universal hashing algorithm and one-time pad encryption scheme. The evaluation results show that our scheme uses at least two orders of magnitude less key than existing signature schemes with transferability when signing files of the same length with the same number of receivers and security parameter settings.
Related papers
- Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Revocable Quantum Digital Signatures [57.25067425963082]
We define and construct digital signatures with revocable signing keys from the LWE assumption.
In this primitive, the signing key is a quantum state which enables a user to sign many messages.
Once the key is successfully revoked, we require that the initial recipient of the key loses the ability to sign.
arXiv Detail & Related papers (2023-12-21T04:10:07Z) - Entanglement-based quantum digital signatures over deployed campus
network [0.6617348612068856]
A major advantage of a quantum-digital-signatures protocol is that it can have information-theoretic security.
We demonstrate and characterize hardware to implement entanglement-based quantum digital signatures over our campus network.
arXiv Detail & Related papers (2023-10-30T11:31:23Z) - A Feasible Hybrid Quantum-Assisted Digital Signature for Arbitrary
Message Length [0.0]
We propose a new quantum-assisted digital signature protocol based on symmetric keys generated by QKD.
The protocol is described for a three-user scenario composed of one sender and two receivers.
arXiv Detail & Related papers (2023-03-01T19:00:02Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Secure access system using signature verification over tablet PC [62.21072852729544]
We describe a highly versatile and scalable prototype for Web-based secure access using signature verification.
The proposed architecture can be easily extended to work with different kinds of sensors and large-scale databases.
arXiv Detail & Related papers (2023-01-11T11:05:47Z) - One-Time Universal Hashing Quantum Digital Signatures without Perfect
Keys [24.240914319917053]
We show that imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising security.
This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols.
arXiv Detail & Related papers (2023-01-03T14:54:27Z) - Practical quantum multiparty signatures using quantum-key-distribution
networks [0.0]
We develop an unconditionally secure signature scheme that guarantees authenticity and transferability of arbitrary length messages in a quantum key distribution network.
We provide a comprehensive security analysis of the developed scheme, perform an optimization of the scheme parameters with respect to the secret key consumption, and demonstrate that the developed scheme is compatible with the capabilities of currently available QKD devices.
arXiv Detail & Related papers (2021-07-27T17:41:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.