論文の概要: Enhancing General Face Forgery Detection via Vision Transformer with
Low-Rank Adaptation
- arxiv url: http://arxiv.org/abs/2303.00917v1
- Date: Thu, 2 Mar 2023 02:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 16:18:21.245050
- Title: Enhancing General Face Forgery Detection via Vision Transformer with
Low-Rank Adaptation
- Title(参考訳): 低ランク適応型視覚トランスフォーマによる顔偽造検出の高速化
- Authors: Chenqi Kong, Haoliang Li, Shiqi Wang
- Abstract要約: 偽造の顔は 偽ニュースや 詐欺 偽造などの セキュリティ上の懸念を訴える
本稿では、視覚変換器(ViT)アーキテクチャに基づく、より一般的な偽顔検出モデルを設計する。
提案手法は, クロスマニピュレーションとクロスデータセット評価の両方において, 最先端検出性能を実現する。
- 参考スコア(独自算出の注目度): 31.780516471483985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, forgery faces pose pressing security concerns over fake news,
fraud, impersonation, etc. Despite the demonstrated success in intra-domain
face forgery detection, existing detection methods lack generalization
capability and tend to suffer from dramatic performance drops when deployed to
unforeseen domains. To mitigate this issue, this paper designs a more general
fake face detection model based on the vision transformer(ViT) architecture. In
the training phase, the pretrained ViT weights are freezed, and only the
Low-Rank Adaptation(LoRA) modules are updated. Additionally, the Single Center
Loss(SCL) is applied to supervise the training process, further improving the
generalization capability of the model. The proposed method achieves
state-of-the-arts detection performances in both cross-manipulation and
cross-dataset evaluations.
- Abstract(参考訳): 今日では、偽ニュース、詐欺、偽造などに対するセキュリティ上の懸念が強まっている。
ドメイン内フェイス偽造検出の成功が実証されたにもかかわらず、既存の検出方法は一般化能力がなく、予期せぬドメインにデプロイすると劇的なパフォーマンス低下に苦しむ傾向がある。
この問題を軽減するために,視覚変換器(ViT)アーキテクチャに基づくより一般的な偽顔検出モデルを設計する。
訓練段階では、プリトレーニングされたvit重みが凍結され、低ランク適応(lora)モジュールのみが更新される。
さらに、SCL(Single Center Loss)をトレーニングプロセスの監視に適用し、モデルの一般化能力をさらに向上させる。
提案手法は,クロスマニピュレーションとクロスデータセット評価の両方において,最先端検出性能を実現する。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
ディープフェイクは、最近、国民の間で重大な信頼問題とセキュリティ上の懸念を提起した。
ViT法はトランスの表現性を生かし,優れた検出性能を実現する。
この研究は、汎用的でパラメータ効率のよいViTベースのアプローチであるFace Forgery Detection (MoE-FFD)のためのMixture-of-Expertsモジュールを導入する。
論文 参考訳(メタデータ) (2024-04-12T13:02:08Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
適応学習パラダイムの下で,textbfForgery-aware textbfAdaptive textbfVision textbfTransformer(FA-ViT)を提案する。
FA-ViTは、クロスデータセット評価において、Celeb-DFおよびDFDCデータセット上で93.83%と78.32%のAUCスコアを達成する。
論文 参考訳(メタデータ) (2023-09-20T06:51:11Z) - S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing with Statistical Tokens [45.06704981913823]
Face Anti-Spoofing (FAS) は、スプーフされた顔を表示することによって、顔認識システムに侵入しようとする悪意のある試みを検出することを目的としている。
本稿では,局所的なトークンヒストグラムから局所的な識別や統計情報を収集する新しい統計適応器(S-Adapter)を提案する。
統計的トークンの一般化をさらに改善するために,新しいトークンスタイル正規化(TSR)を提案する。
提案したS-AdapterとTSRは、ゼロショットと少数ショットのクロスドメインテストの両方において、いくつかのベンチマークテストにおいて、最先端の手法よりも優れた、大きなメリットをもたらすことを示した。
論文 参考訳(メタデータ) (2023-09-07T22:36:22Z) - Benchmarking Detection Transfer Learning with Vision Transformers [60.97703494764904]
オブジェクト検出メソッドの複雑さは、ViT(Vision Transformer)モデルのような新しいアーキテクチャが到着するときに、ベンチマークを非簡単にする。
本研究では,これらの課題を克服し,標準的なVTモデルをMask R-CNNのバックボーンとして活用する訓練手法を提案する。
その結果,最近のマスキングに基づく教師なし学習手法は,COCOにおける説得力のあるトランスファー学習改善をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-22T18:59:15Z) - On the Effectiveness of Vision Transformers for Zero-shot Face
Anti-Spoofing [7.665392786787577]
本研究では、ゼロショットアンチスプーフィングタスクにおいて、視覚変換器モデルからの伝達学習を用いる。
提案手法は、HQ-WMCAおよびSiW-Mデータセットにおけるゼロショットプロトコルにおける最先端の手法を大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-11-16T15:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。