論文の概要: Evolutionary Computation in Action: Hyperdimensional Deep Embedding
Spaces of Gigapixel Pathology Images
- arxiv url: http://arxiv.org/abs/2303.00943v1
- Date: Thu, 2 Mar 2023 03:36:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 16:09:59.585784
- Title: Evolutionary Computation in Action: Hyperdimensional Deep Embedding
Spaces of Gigapixel Pathology Images
- Title(参考訳): 行動における進化的計算: ギガピクセル病理画像の超次元深埋め込み空間
- Authors: Azam Asilian Bidgoli, Shahryar Rahnamayan, Taher Dehkharghanian, Abtin
Riasatian, H.R. Tizhoosh
- Abstract要約: 本稿では, 大規模多目的最適化(LSMOP)に基づくWSI表現の進化的アプローチを提案する。
The Cancer Genome Atlas(TC)画像を用いて,WSI表現,分類精度,特徴品質の観点から提案手法を検証した。
提案した進化的アルゴリズムは、最先端の手法によって提供されるコードよりも8%高い精度でWSIを表現するための非常にコンパクトな特徴ベクトルを求める。
- 参考スコア(独自算出の注目度): 0.6037276428689636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main obstacles of adopting digital pathology is the challenge of
efficient processing of hyperdimensional digitized biopsy samples, called whole
slide images (WSIs). Exploiting deep learning and introducing compact WSI
representations are urgently needed to accelerate image analysis and facilitate
the visualization and interpretability of pathology results in a postpandemic
world. In this paper, we introduce a new evolutionary approach for WSI
representation based on large-scale multi-objective optimization (LSMOP) of
deep embeddings. We start with patch-based sampling to feed KimiaNet , a
histopathology-specialized deep network, and to extract a multitude of feature
vectors. Coarse multi-objective feature selection uses the reduced search space
strategy guided by the classification accuracy and the number of features. In
the second stage, the frequent features histogram (FFH), a novel WSI
representation, is constructed by multiple runs of coarse LSMOP. Fine
evolutionary feature selection is then applied to find a compact (short-length)
feature vector based on the FFH and contributes to a more robust deep-learning
approach to digital pathology supported by the stochastic power of evolutionary
algorithms. We validate the proposed schemes using The Cancer Genome Atlas
(TCGA) images in terms of WSI representation, classification accuracy, and
feature quality. Furthermore, a novel decision space for multicriteria decision
making in the LSMOP field is introduced. Finally, a patch-level visualization
approach is proposed to increase the interpretability of deep features. The
proposed evolutionary algorithm finds a very compact feature vector to
represent a WSI (almost 14,000 times smaller than the original feature vectors)
with 8% higher accuracy compared to the codes provided by the state-of-the-art
methods.
- Abstract(参考訳): デジタル病理学を採用する主な障害の1つは、全スライド画像(WSI)と呼ばれる超次元デジタル化生検サンプルの効率的な処理である。
画像解析の高速化と病理の可視化と解釈の促進のためには,深層学習とコンパクトなwsi表現の導入が急務である。
本稿では,深層埋め込みの大規模多目的最適化(lsmop)に基づくwsi表現の新しい進化的アプローチを提案する。
まず,組織病理学を専門とする深層ネットワークであるkimianetを供給し,多数の特徴ベクトルを抽出するパッチベースのサンプリングから始める。
粗い多目的特徴選択は、分類精度と特徴数によって導かれる少ない探索空間戦略を用いる。
第2段階では、新しいWSI表現である頻繁な特徴ヒストグラム(FFH)は、粗いLSMOPの複数の実行によって構成される。
微細な進化的特徴選択は、FFHに基づくコンパクトな(短い)特徴ベクトルを見つけるために適用され、進化アルゴリズムの確率的力によって支持されるデジタル病理に対するより堅牢なディープラーニングアプローチに寄与する。
The Cancer Genome Atlas(TCGA)画像を用いて,WSI表現,分類精度,特徴品質の観点から提案手法を検証した。
さらに,LSMOP分野における複数基準決定のための新しい決定空間を導入する。
最後に,深い特徴の解釈性を高めるためにパッチレベルの可視化手法を提案する。
提案された進化アルゴリズムは、wsi(元の特徴ベクトルの約14,000倍小さい)を表す非常にコンパクトな特徴ベクトルを、最先端の手法で提供されるコードよりも8%高い精度で発見する。
関連論文リスト
- A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology [0.0]
デジタル病理学は、スライド画像全体(WSI)としての組織サンプルのデジタル化、保存、分析を可能にすることによって、病理学の分野に革命をもたらす
WSIは、組織サンプルの複雑な詳細をキャプチャするギガピクセルファイルであり、診断と研究目的のための豊富な情報ソースを提供する。
その巨大さのため、これらの画像を1つのコンパクトベクトルとして表現することは、多くの計算病理学的タスクに不可欠である。
論文 参考訳(メタデータ) (2024-09-06T20:56:25Z) - GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
本稿では病理組織像分割のためのMultiResU-Netの修正版を提案する。
複雑な機能を複数のスケールで分析し、セグメント化できるため、バックボーンとして選択される。
乳がんの病理組織像データセットの多様性について検討した。
論文 参考訳(メタデータ) (2024-06-12T19:17:17Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - An Efficient Cervical Whole Slide Image Analysis Framework Based on
Multi-scale Semantic and Spatial Features using Deep Learning [2.7218168309244652]
本研究では,YOLCO(You Only Look Cytopathology Once)という名前の軽量モデルを構築するために,マルチスケール接続を充実させることにより,新しいインライン接続ネットワーク(InCNet)を設計する。
提案したモデルでは、入力サイズをメガピクセルに拡大し、平均リピートで重なり合うことなくWSIを縫合することができる。
統合マルチスケールマルチタスクの特徴を分類するためのTransformerに基づいて、実験結果は、WSI分類における従来の方法よりも0.872$ AUCスコアが良く、2.51times$速く見える。
論文 参考訳(メタデータ) (2021-06-29T06:24:55Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。