Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks
- URL: http://arxiv.org/abs/2303.01140v2
- Date: Mon, 3 Jun 2024 07:51:54 GMT
- Title: Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks
- Authors: Tim Schwabe, Maribel Acosta,
- Abstract summary: Cardinality Estimation over Knowledge Graphs (KG) is crucial for query optimization.
We propose GNCE, a novel approach that leverages knowledge graph embeddings and Graph Neural Networks (GNN) to accurately predict the cardinality of conjunctive queries.
- Score: 0.552480439325792
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cardinality Estimation over Knowledge Graphs (KG) is crucial for query optimization, yet remains a challenging task due to the semi-structured nature and complex correlations of typical Knowledge Graphs. In this work, we propose GNCE, a novel approach that leverages knowledge graph embeddings and Graph Neural Networks (GNN) to accurately predict the cardinality of conjunctive queries. GNCE first creates semantically meaningful embeddings for all entities in the KG, which are then integrated into the given query, which is processed by a GNN to estimate the cardinality of the query. We evaluate GNCE on several KGs in terms of q-Error and demonstrate that it outperforms state-of-the-art approaches based on sampling, summaries, and (machine) learning in terms of estimation accuracy while also having lower execution time and less parameters. Additionally, we show that GNCE can inductively generalise to unseen entities, making it suitable for use in dynamic query processing scenarios. Our proposed approach has the potential to significantly improve query optimization and related applications that rely on accurate cardinality estimates of conjunctive queries.
Related papers
- Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
We propose TypE-based Neural Link Prediction Adapter (TENLPA), a novel model that constructs type-based entity-relation graphs.
In order to effectively combine type information with complex logical queries, an adaptive learning mechanism is introduced.
Experiments on 3 standard datasets show that TENLPA model achieves state-of-the-art performance on complex query answering.
arXiv Detail & Related papers (2024-01-29T10:54:28Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - A Retrieve-and-Read Framework for Knowledge Graph Link Prediction [13.91545690758128]
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG.
Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information.
We propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader.
arXiv Detail & Related papers (2022-12-19T18:50:54Z) - Neural-Symbolic Entangled Framework for Complex Query Answering [22.663509971491138]
We propose a Neural and Entangled framework (ENeSy) for complex query answering.
It enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness.
ENeSy achieves the SOTA performance on several benchmarks, especially in the setting of the training model only with the link prediction task.
arXiv Detail & Related papers (2022-09-19T06:07:10Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Modeling Global Semantics for Question Answering over Knowledge Bases [16.341353183347664]
We present a relational graph convolutional network (RGCN)-based model gRGCN for semantic parsing in KBQA.
Experiments evaluated on benchmarks show that our model outperforms off-the-shelf models.
arXiv Detail & Related papers (2021-01-05T13:51:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.