KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning
- URL: http://arxiv.org/abs/2503.14234v2
- Date: Wed, 19 Mar 2025 04:49:29 GMT
- Title: KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning
- Authors: Ruiyi Yang, Hao Xue, Imran Razzak, Hakim Hacid, Flora D. Salim,
- Abstract summary: GraphRAG has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge.<n>This paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning.<n>Three new datasets are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
- Score: 18.96570718233786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
Related papers
- RAKG:Document-level Retrieval Augmented Knowledge Graph Construction [10.013667560362565]
This paper focuses on the task of automatic document-level knowledge graph construction.
It proposes the Document-level Retrieval Augmented Knowledge Graph Construction (RAKG) framework.
arXiv Detail & Related papers (2025-04-14T02:47:23Z) - Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models [51.47994645529258]
We propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance.
Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
arXiv Detail & Related papers (2025-03-30T17:09:11Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.
RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.
Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models.<n>We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)<n>We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
We propose a Knowledge Graph-Guided Retrieval Augmented Generation framework.
KG$2$RAG provides fact-level relationships between chunks, improving the diversity and coherence of the retrieved results.
arXiv Detail & Related papers (2025-02-08T02:14:31Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)<n>By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.<n> Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.
GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.
It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.
This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.<n>We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.<n>Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning [87.10396098919013]
Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning.<n>We propose a Large Language Models-guided Dynamic Adaptation (LLM-DA) method for reasoning on Temporal Knowledge Graphs.<n>LLM-DA harnesses the capabilities of LLMs to analyze historical data and extract temporal logical rules.
arXiv Detail & Related papers (2024-05-23T04:54:37Z) - Federated Neural Graph Databases [53.03085605769093]
We propose Federated Neural Graph Database (FedNGDB), a novel framework that enables reasoning over multi-source graph-based data while preserving privacy.
Unlike existing methods, FedNGDB can handle complex graph structures and relationships, making it suitable for various downstream tasks.
arXiv Detail & Related papers (2024-02-22T14:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.