Steering Graph Neural Networks with Pinning Control
- URL: http://arxiv.org/abs/2303.01265v2
- Date: Sat, 6 May 2023 03:28:41 GMT
- Title: Steering Graph Neural Networks with Pinning Control
- Authors: Acong Zhang, Ping Li, Guanrong Chen
- Abstract summary: We propose a control principle to supervise representation learning by leveraging the prototypes (i.e., class centers) of labeled data.
Treating graph learning as a discrete dynamic process and the prototypes of labeled data as "desired" class representations, we borrow the pinning control idea from automatic control theory.
Our experiments demonstrate that the proposed PCGCN model achieves better performances than deep GNNs and other competitive heterophily-oriented methods.
- Score: 23.99873285634287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the semi-supervised setting where labeled data are largely limited, it
remains to be a big challenge for message passing based graph neural networks
(GNNs) to learn feature representations for the nodes with the same class label
that is distributed discontinuously over the graph. To resolve the
discontinuous information transmission problem, we propose a control principle
to supervise representation learning by leveraging the prototypes (i.e., class
centers) of labeled data. Treating graph learning as a discrete dynamic process
and the prototypes of labeled data as "desired" class representations, we
borrow the pinning control idea from automatic control theory to design
learning feedback controllers for the feature learning process, attempting to
minimize the differences between message passing derived features and the class
prototypes in every round so as to generate class-relevant features.
Specifically, we equip every node with an optimal controller in each round
through learning the matching relationships between nodes and the class
prototypes, enabling nodes to rectify the aggregated information from
incompatible neighbors in a graph with strong heterophily. Our experiments
demonstrate that the proposed PCGCN model achieves better performances than
deep GNNs and other competitive heterophily-oriented methods, especially when
the graph has very few labels and strong heterophily.
Related papers
- Variational Graph Auto-Encoder Based Inductive Learning Method for Semi-Supervised Classification [10.497590357666114]
We propose the Self-Label Augmented VGAE model for inductive graph representation learning.
To leverage the label information for training, our model takes node labels as one-hot encoded inputs and then performs label reconstruction in model training.
Our proposed model archives promise results on node classification with particular superiority under semi-supervised learning settings.
arXiv Detail & Related papers (2024-03-26T08:59:37Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner.
To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS.
arXiv Detail & Related papers (2024-03-03T12:34:13Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
Graph Convolutional Network (GCN) decouples neighborhood aggregation and feature transformation in each convolutional layer.
In this paper, we propose a new paradigm of GCN, termed Neighborhood Convolutional Network (NCN)
In this way, the model could inherit the merit of decoupled GCN for aggregating neighborhood information, at the same time, develop much more powerful feature learning modules.
arXiv Detail & Related papers (2022-11-15T02:02:51Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
Some work shows that coupling is inferior to decoupling, which supports deep graph propagation better.
Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood.
We propose a new label propagation method named propagation then training Adaptively (PTA), which overcomes the flaws of the decoupled GCN.
arXiv Detail & Related papers (2020-10-23T13:57:39Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.