論文の概要: Deep-NFA: a Deep $\textit{a contrario}$ Framework for Small Object
Detection
- arxiv url: http://arxiv.org/abs/2303.01363v1
- Date: Thu, 2 Mar 2023 15:48:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 13:33:08.058119
- Title: Deep-NFA: a Deep $\textit{a contrario}$ Framework for Small Object
Detection
- Title(参考訳): Deep-NFA:小さなオブジェクト検出のためのDeep $\textit{a contrario}$ Framework
- Authors: Alina Ciocarlan, Sylvie Le Hegarat-Mascle, Sidonie Lefebvre and Arnaud
Woiselle
- Abstract要約: 我々は,小物体の予期せぬ性質を考慮するために,学習プロセスに$textita contrario$ decision criterionを導入する。
我々のアドオンNFAモジュールは、それぞれ小目標と亀裂検出タスクの競合結果を得るだけでなく、より堅牢で解釈可能な結果をもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of small objects is a challenging task in computer vision.
Conventional object detection methods have difficulty in finding the balance
between high detection and low false alarm rates. In the literature, some
methods have addressed this issue by enhancing the feature map responses, but
without guaranteeing robustness with respect to the number of false alarms
induced by background elements. To tackle this problem, we introduce an
$\textit{a contrario}$ decision criterion into the learning process to take
into account the unexpectedness of small objects. This statistic criterion
enhances the feature map responses while controlling the number of false alarms
(NFA) and can be integrated into any semantic segmentation neural network. Our
add-on NFA module not only allows us to obtain competitive results for small
target and crack detection tasks respectively, but also leads to more robust
and interpretable results.
- Abstract(参考訳): 小型物体の検出はコンピュータビジョンにおいて難しい課題である。
従来の物体検出手法は、高い検出と低い誤報率のバランスを見つけるのに困難である。
文献では、背景要素によって引き起こされる誤報の数に関して堅牢性を保証することなく、特徴マップ応答を増強することでこの問題に対処した手法がいくつかある。
この問題に対処するために,学習プロセスに$\textit{a contrario}$決定基準を導入して,小さなオブジェクトの予期せぬ性質を考慮に入れる。
この統計基準は、偽アラームの数(NFA)を制御しながら特徴マップ応答を高め、任意のセグメンテーションニューラルネットワークに統合することができる。
我々のアドオンNFAモジュールは、それぞれ小さなターゲットとひび割れ検出タスクの競合結果を得るだけでなく、より堅牢で解釈可能な結果をもたらす。
関連論文リスト
- Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
Sparse Semi-DETRは、トランスフォーマーをベースとした、エンドツーエンドの半教師付きオブジェクト検出ソリューションである。
Sparse Semi-DETR には Query Refinement Module が組み込まれており、オブジェクトクエリの品質を高め、小型で部分的に隠されたオブジェクトの検出能力を著しく改善している。
MS-COCOおよびPascal VOCオブジェクト検出ベンチマークでは、Sparse Semi-DETRは現在の最先端手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-02T10:22:23Z) - Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
本研究は,ノイズラベル管理下での微小物体検出の問題に対処する。
本稿では,DN-TOD(Denoising Tiny Object Detector)を提案する。
本手法は,1段と2段の両方のオブジェクト検出パイプラインにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-01-16T02:14:33Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Detecting tiny objects in aerial images: A normalized Wasserstein
distance and a new benchmark [45.10513110142015]
本稿では, 正規化ワッサースタイン距離 (NWD) と呼ばれる新しい評価基準と, 小型物体検出のためのRanKing-based Assigning (RKA) 戦略を提案する。
提案したNWD-RKA戦略は、標準のIoUしきい値に基づくものを置き換えるために、あらゆる種類のアンカーベースの検出器に容易に組み込むことができる。
4つのデータセットでテストされたNWD-RKAは、大きなマージンで小さなオブジェクト検出性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-06-28T13:33:06Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Object Detection Made Simpler by Eliminating Heuristic NMS [70.93004137521946]
単純なNMSのないエンドツーエンドのオブジェクト検出フレームワークを示す。
検出精度は元の1段検出器と比べて同等か、さらに向上した。
論文 参考訳(メタデータ) (2021-01-28T02:38:29Z) - Transformer-Encoder Detector Module: Using Context to Improve Robustness
to Adversarial Attacks on Object Detection [12.521662223741673]
本稿では、オブジェクトインスタンスのラベル付けを改善するために、オブジェクト検出器に適用可能な新しいコンテキストモジュールを提案する。
提案モデルは,ベースラインのFaster-RCNN検出器と比較して,mAP,F1スコア,AUC平均スコアを最大13%向上させる。
論文 参考訳(メタデータ) (2020-11-13T15:52:53Z) - Instance-aware, Context-focused, and Memory-efficient Weakly Supervised
Object Detection [184.563345153682]
我々は、弱教師付き学習のためのインスタンス認識とコンテキスト重視の統合フレームワークを開発する。
メモリ効率の高いシーケンシャルバッチバックプロパゲーションを考案しながら、インスタンス対応の自己学習アルゴリズムと学習可能なコンクリートドロップブロックを採用している。
提案手法はCOCO(12.1% AP$、24.8% AP_50$)、VOC 2007(54.9% AP$)、VOC 2012(52.1% AP$)の最先端結果である。
論文 参考訳(メタデータ) (2020-04-09T17:57:09Z) - Seeing without Looking: Contextual Rescoring of Object Detections for AP
Maximization [4.346179456029563]
任意の検出器の出力を後処理することで、コンテキストをオブジェクト検出に組み込むことを提案する。
再現は、検出の集合全体からコンテキスト情報を条件付けすることで行われる。
検出信頼度を簡易に再割り当てすることでAPを改善できることを示す。
論文 参考訳(メタデータ) (2019-12-27T18:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。