Study of Distractors in Neural Models of Code
- URL: http://arxiv.org/abs/2303.01739v1
- Date: Fri, 3 Mar 2023 06:54:01 GMT
- Title: Study of Distractors in Neural Models of Code
- Authors: Md Rafiqul Islam Rabin, Aftab Hussain, Sahil Suneja and Mohammad Amin
Alipour
- Abstract summary: Finding important features that contribute to the prediction of neural models is an active area of research in explainable AI.
In this work, we present an inverse perspective of distractor features: features that cast doubt about the prediction by affecting the model's confidence in its prediction.
Our experiments across various tasks, models, and datasets of code reveal that the removal of tokens can have a significant impact on the confidence of models in their predictions.
- Score: 4.043200001974071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding important features that contribute to the prediction of neural models
is an active area of research in explainable AI. Neural models are opaque and
finding such features sheds light on a better understanding of their
predictions. In contrast, in this work, we present an inverse perspective of
distractor features: features that cast doubt about the prediction by affecting
the model's confidence in its prediction. Understanding distractors provide a
complementary view of the features' relevance in the predictions of neural
models. In this paper, we apply a reduction-based technique to find distractors
and provide our preliminary results of their impacts and types. Our experiments
across various tasks, models, and datasets of code reveal that the removal of
tokens can have a significant impact on the confidence of models in their
predictions and the categories of tokens can also play a vital role in the
model's confidence. Our study aims to enhance the transparency of models by
emphasizing those tokens that significantly influence the confidence of the
models.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Unveiling the Potential of Probabilistic Embeddings in Self-Supervised
Learning [4.124934010794795]
Self-supervised learning has played a pivotal role in advancing machine learning by allowing models to acquire meaningful representations from unlabeled data.
We investigate the impact of probabilistic modeling on the information bottleneck, shedding light on a trade-off between compression and preservation of information in both representation and loss space.
Our findings suggest that introducing an additional bottleneck in the loss space can significantly enhance the ability to detect out-of-distribution examples.
arXiv Detail & Related papers (2023-10-27T12:01:16Z) - What Do Deep Saliency Models Learn about Visual Attention? [28.023464783469738]
We present a novel analytic framework that sheds light on the implicit features learned by saliency models.
Our approach decomposes these implicit features into interpretable bases that are explicitly aligned with semantic attributes.
arXiv Detail & Related papers (2023-10-14T23:15:57Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
We develop a robust interventional-based method to capture cause-effect mechanisms in pre-trained neural networks.
We apply our method to vision models trained on classification tasks.
arXiv Detail & Related papers (2023-05-15T18:37:24Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq abstractive summarization models generate text in a free-form manner.
We study the entropy, or uncertainty, of the model's token-level predictions.
We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
arXiv Detail & Related papers (2020-10-15T16:57:27Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - A Causal Lens for Peeking into Black Box Predictive Models: Predictive
Model Interpretation via Causal Attribution [3.3758186776249928]
We aim to address this problem in settings where the predictive model is a black box.
We reduce the problem of interpreting a black box predictive model to that of estimating the causal effects of each of the model inputs on the model output.
We show how the resulting causal attribution of responsibility for model output to the different model inputs can be used to interpret the predictive model and to explain its predictions.
arXiv Detail & Related papers (2020-08-01T23:20:57Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.