論文の概要: Gradient-based Bayesian Experimental Design for Implicit Models using
Mutual Information Lower Bounds
- arxiv url: http://arxiv.org/abs/2105.04379v1
- Date: Mon, 10 May 2021 13:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 18:04:59.670958
- Title: Gradient-based Bayesian Experimental Design for Implicit Models using
Mutual Information Lower Bounds
- Title(参考訳): 相互情報下界を用いた入射モデルの勾配に基づくベイズ実験設計
- Authors: Steven Kleinegesse and Michael U. Gutmann
- Abstract要約: ベイズ実験設計のためのフレームワーク(BED)を暗黙のモデルで導入する。データ生成分布は難解だが、そこからのサンプリングは可能である。
このようなモデルに最適な実験設計を見つけるために、ニューラルネットワークがパラメータとする相互情報の低い境界を最大化します。
ニューラルネットワークをサンプルデータ上でトレーニングすることで,勾配アセンシングを用いたネットワークパラメータと設計を同時に更新する。
- 参考スコア(独自算出の注目度): 20.393359858407162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a framework for Bayesian experimental design (BED) with implicit
models, where the data-generating distribution is intractable but sampling from
it is still possible. In order to find optimal experimental designs for such
models, our approach maximises mutual information lower bounds that are
parametrised by neural networks. By training a neural network on sampled data,
we simultaneously update network parameters and designs using stochastic
gradient-ascent. The framework enables experimental design with a variety of
prominent lower bounds and can be applied to a wide range of scientific tasks,
such as parameter estimation, model discrimination and improving future
predictions. Using a set of intractable toy models, we provide a comprehensive
empirical comparison of prominent lower bounds applied to the aforementioned
tasks. We further validate our framework on a challenging system of stochastic
differential equations from epidemiology.
- Abstract(参考訳): 我々は,データ生成分布が難解であるが,そこからサンプリングできる暗黙のモデルを用いたベイズ実験設計(bed)のためのフレームワークを提案する。
このようなモデルに対する最適実験設計を見つけるために,ニューラルネットワークによってパラメトリされる相互情報の下位境界を最大化する。
ニューラルネットワークをサンプルデータ上でトレーニングすることにより,確率勾配法によるネットワークパラメータと設計を同時に更新する。
このフレームワークは、様々な顕著な下界を持つ実験的な設計を可能にし、パラメータ推定、モデル判別、将来の予測の改善など、幅広い科学的タスクに適用することができる。
難解な玩具モデルを用いて,上述のタスクに適用した著明な下界の包括的経験的比較を行う。
さらに, 疫学における確率微分方程式の挑戦的な系に関する枠組みを検証した。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Fully differentiable model discovery [0.0]
ニューラルネットワークに基づくサロゲートとスパースベイズ学習を組み合わせたアプローチを提案する。
我々の研究は、PINNを様々なタイプのニューラルネットワークアーキテクチャに拡張し、ニューラルネットワークベースのサロゲートをベイズパラメータ推論のリッチフィールドに接続する。
論文 参考訳(メタデータ) (2021-06-09T08:11:23Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Sequential Bayesian Experimental Design for Implicit Models via Mutual
Information [12.68659360172393]
自然科学と医学科学に特に興味を持つモデルのクラスは暗黙のモデルである。
モデルパラメータとシミュレーションデータ間の相互情報(MI)を実用関数として用いたパラメータ推定のための新しい逐次設計フレームワークを考案する。
我々のフレームワークは、テストされた様々な暗黙のモデルに対して効率的であることが分かり、数回の反復で正確なパラメータ推定が得られます。
論文 参考訳(メタデータ) (2020-03-20T16:52:10Z) - Bayesian Experimental Design for Implicit Models by Mutual Information
Neural Estimation [16.844481439960663]
データ・ジェネレーションの分布が魅力的ながサンプリングが可能なインプリシット・モデルは、自然科学においてユビキタスである。
基本的な問題は、収集したデータが最も有用になるように実験を設計する方法である。
しかし、暗黙のモデルでは、この手法は後続計算の計算コストが高いために著しく妨げられている。
ニューラルネットワークをトレーニングして、MIの下位境界を最大化することで、最適な設計と後部を共同で決定できることが示される。
論文 参考訳(メタデータ) (2020-02-19T12:09:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。