論文の概要: Robust affine point matching via quadratic assignment on Grassmannians
- arxiv url: http://arxiv.org/abs/2303.02698v4
- Date: Sat, 4 May 2024 09:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 01:45:49.999317
- Title: Robust affine point matching via quadratic assignment on Grassmannians
- Title(参考訳): グラスマン多様体上の二次割り当てによるロバストアフィン点マッチング
- Authors: Alexander Kolpakov, Michael Werman,
- Abstract要約: Affine matching with Grassmannians (RAG) is a new algorithm to perform affine registration of point clouds。
RAGは従来の手法よりもノイズや点差に対して堅牢である。
- 参考スコア(独自算出の注目度): 50.366876079978056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust Affine matching with Grassmannians (RAG) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RAG is more robust to noise and point discrepancy than previous methods.
- Abstract(参考訳): Robust Affine matching with Grassmannians (RAG) は点雲のアフィン登録を行う新しいアルゴリズムである。
このアルゴリズムは、グラスマンの2つの要素間のフロベニウス距離を最小化することに基づいている。
この目的のために、二次割り当て問題(QAP)の無期限緩和を用い、アフィン特徴マッチングに対するいくつかのアプローチを研究、比較した。
実験により、RAGは従来の手法よりもノイズや点差に対して堅牢であることが示された。
関連論文リスト
- Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems [4.42498215122234]
本研究では,関数空間におけるベイズ逆問題の解法を提案する。
可能性の対数共空性は仮定せず、非線型逆問題と互換性がある。
従来の正規化法で確立された固定点法に着想を得た新しい収束解析を行う。
論文 参考訳(メタデータ) (2024-05-24T16:17:01Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
本稿では,一階変分法の理論解析のための統一的アプローチを提案する。
提案手法は非線形勾配問題とモンテカルロの強い問題の両方をカバーする。
凸法最適化問題の場合、オラクルに強く一致するような境界を与える。
論文 参考訳(メタデータ) (2023-05-25T11:11:31Z) - Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both
Worlds in Stochastic and Deterministic Environments [48.96971760679639]
マルコフ決定過程(MDP)の分散依存的後悔境界について検討する。
環境の微細な分散特性を特徴付けるための2つの新しい環境規範を提案する。
モデルに基づく手法では、MVPアルゴリズムの変種を設計する。
特に、この境界は極小かつ決定論的 MDP に対して同時に最適である。
論文 参考訳(メタデータ) (2023-01-31T06:54:06Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
確率的3Dポイントクラウド登録法は、ノイズ、アウトレーヤ、密度変動を克服する競合性能を示した。
本稿では,一致したガウス混合モデル(GMM)パラメータから最適変換を演算する,重複誘導確率登録手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:02:33Z) - Reinforcement Learning with Unbiased Policy Evaluation and Linear
Function Approximation [11.345796608258434]
マルコフ決定プロセスを制御するためのシミュレーションベースのポリシーイテレーションの変種に対して,性能保証を提供する。
第一のアルゴリズムは最小二乗アプローチを伴い、各反復において、特徴ベクトルに関連する新しい重みの集合が少なくとも二乗によって得られる。
第2のアルゴリズムは、最小二乗解への勾配降下を数ステップ行う2段階の近似アルゴリズムを含む。
論文 参考訳(メタデータ) (2022-10-13T20:16:19Z) - Fuzzy Clustering by Hyperbolic Smoothing [0.0]
本研究では,スムーズな数値手法を用いて,大規模データセットのファジィクラスタを構築する手法を提案する。
この平滑化により、強微分不可能な問題から低次元の制約を伴わずに、最適化の微分可能部分確率に変換することができる。
論文 参考訳(メタデータ) (2022-07-09T12:40:46Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
非強凸設定における最小二乗回帰問題の近似を考察する。
本稿では,問題のノイズに依存して最適な予測誤差率を実現するための,最初の実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T14:39:33Z) - Stochastic Projective Splitting: Solving Saddle-Point Problems with
Multiple Regularizers [4.568911586155097]
本稿では、包含問題に対する単調アルゴリズムの射影分割(PS)系列の新たな変種について述べる。
勾配降下上昇に伴う収束問題なしに、ロバストMLのような応用で生じるmin-maxおよび非協調ゲーム定式化を解くことができる。
論文 参考訳(メタデータ) (2021-06-24T14:48:43Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。