論文の概要: Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators
- arxiv url: http://arxiv.org/abs/2303.02707v2
- Date: Sat, 13 Jul 2024 08:52:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 05:28:16.752903
- Title: Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators
- Title(参考訳): 株価指数指標を用いた階層的金融データによる産業リスク評価
- Authors: Hongyin Zhu,
- Abstract要約: 本稿では,実時間株式市場データと生成小言語モデル(SLM)を活用した産業動向の分析手法を提案する。
重要な課題の1つは、生データの固有のノイズであり、統計分析の精度を損なう可能性がある。
本稿では,業界トレンド分析における二段階的アプローチとして,明示的および暗黙的分析を提案する。
- 参考スコア(独自算出の注目度): 0.9463895540925061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Risk assessment across industries is paramount for ensuring a robust and sustainable economy. While previous studies have relied heavily on official statistics for their accuracy, they often lag behind real-time developments. Addressing this gap, our research endeavors to integrate market microstructure theory with AI technologies to refine industry risk predictions. This paper presents an approach to analyzing industry trends leveraging real-time stock market data and generative small language models (SLMs). By enhancing the timeliness of risk assessments and delving into the influence of non-traditional factors such as market sentiment and investor behavior, we strive to develop a more holistic and dynamic risk assessment model. One of the key challenges lies in the inherent noise in raw data, which can compromise the precision of statistical analyses. Moreover, textual data about industry analysis necessitates a deeper understanding facilitated by pre-trained language models. To tackle these issues, we propose a dual-pronged approach to industry trend analysis: explicit and implicit analysis. For explicit analysis, we employ a hierarchical data analysis methodology that spans the industry and individual listed company levels. This strategic breakdown helps mitigate the impact of data noise, ensuring a more accurate portrayal of industry dynamics. In parallel, we introduce implicit analysis, where we pre-train an SML to interpret industry trends within the context of current news events. This approach leverages the extensive knowledge embedded in the pre-training corpus, enabling a nuanced understanding of industry trends and their underlying drivers. Experimental results based on our proposed methodology demonstrate its effectiveness in delivering robust industry trend analyses, underscoring its potential to revolutionize risk assessment practices across industries.
- Abstract(参考訳): 業界全体でのリスクアセスメントは、堅牢で持続可能な経済を保証する上で最重要である。
これまでの研究は、その正確性に関する公式統計に大きく依存していたが、しばしばリアルタイム開発に遅れを取っている。
このギャップに対処するため、我々の研究は、市場マイクロ構造理論をAI技術と統合し、業界リスク予測を洗練させようとしています。
本稿では,実時間株式市場データと生成小言語モデル(SLM)を活用した産業動向の分析手法を提案する。
リスク評価のタイムラインを強化し、市場感情や投資家行動といった非伝統的要因の影響を掘り下げることで、より包括的でダイナミックなリスク評価モデルの開発に努める。
重要な課題の1つは、生データの固有のノイズであり、統計分析の精度を損なう可能性がある。
さらに、産業分析に関するテキストデータは、事前学習された言語モデルによって促進される深い理解を必要とする。
これらの課題に対処するため、業界トレンド分析(明示的・暗黙的分析)に対する二元的アプローチを提案する。
明示的な分析には、業界と個々の上場企業レベルにまたがる階層的なデータ分析手法を用いる。
この戦略的破壊は、データノイズの影響を緩和し、業界のダイナミクスをより正確に表現するのに役立つ。
同時に、現在のニュースイベントの文脈内で業界の動向を解釈するために、SMLを事前訓練する暗黙的な分析を導入する。
このアプローチでは、事前学習コーパスに埋め込まれた広範な知識を活用して、業界動向とその基盤となるドライバの微妙な理解を可能にします。
提案手法に基づく実験結果から,ロバストな産業動向分析を実現する上での有効性が実証され,業界全体でのリスクアセスメントの実践に革命をもたらす可能性が示唆された。
関連論文リスト
- FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
本稿では、エクイティリサーチに特化したAIエージェントフレームワークであるFinRobotについて述べる。
FinRobotはマルチエージェント・チェーン・オブ・シント(CoT)システムを採用し、定量分析と定性的分析を統合し、人間のアナリストの包括的な推論をエミュレートする。
CapitalCubeやWright Reportsのような既存の自動研究ツールとは異なり、FinRobotは大手ブローカー会社や基礎研究ベンダーと同等の洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T17:38:07Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A Novel Framework for Analyzing Structural Transformation in Data-Constrained Economies Using Bayesian Modeling and Machine Learning [0.0]
農業経済からより多様化した産業やサービスベースのシステムへの移行は、経済発展の重要な要因である。
低所得国と中所得国(LMIC)では、データの不足と信頼性の欠如が、このプロセスの正確な評価を妨げる。
本稿では,ベイジアン階層モデリング,機械学習に基づくデータ計算,因子分析を統合することで,これらの課題に対処する新しい統計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-25T08:39:41Z) - Long Short-Term Memory Pattern Recognition in Currency Trading [0.0]
ワイコフフェイズ(Wyckoff Phases)は、リチャード・D・ワイコフが20世紀初頭に考案したフレームワークである。
本研究は、取引範囲と二次試験の段階を探求し、市場ダイナミクスを理解することの重要性を解明する。
この研究は、これらの相の複雑さを解き明かすことで、市場構造を通して流動性を生み出すことに光を当てている。
この研究は、金融分析とトレーディング戦略におけるAI駆動アプローチの変革の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-23T12:59:49Z) - AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis [0.0]
サプライチェーンリスクアセスメント(SCRA)は、人工知能(AI)と機械学習(ML)技術を統合することで、大きな進化を目撃している。
以前のレビューでは確立した方法論を概説しているが、新たなAI/ML技術を見落としている。
本稿では,総合的な文献分析と体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-12-12T17:47:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Modeling and mitigation of occupational safety risks in dynamic
industrial environments [0.0]
本稿では,データ駆動方式で安全リスクを連続的かつ定量的に評価する手法を提案する。
オンライン形式で安全データからこのモデルを校正するために、完全なベイズ的アプローチが開発されている。
提案したモデルは自動意思決定に利用することができる。
論文 参考訳(メタデータ) (2022-05-02T13:04:25Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。