Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators
- URL: http://arxiv.org/abs/2303.02707v2
- Date: Sat, 13 Jul 2024 08:52:50 GMT
- Title: Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators
- Authors: Hongyin Zhu,
- Abstract summary: This paper presents an approach to analyzing industry trends leveraging real-time stock market data and generative small language models (SLMs)
One of the key challenges lies in the inherent noise in raw data, which can compromise the precision of statistical analyses.
We propose a dual-pronged approach to industry trend analysis: explicit and implicit analysis.
- Score: 0.9463895540925061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Risk assessment across industries is paramount for ensuring a robust and sustainable economy. While previous studies have relied heavily on official statistics for their accuracy, they often lag behind real-time developments. Addressing this gap, our research endeavors to integrate market microstructure theory with AI technologies to refine industry risk predictions. This paper presents an approach to analyzing industry trends leveraging real-time stock market data and generative small language models (SLMs). By enhancing the timeliness of risk assessments and delving into the influence of non-traditional factors such as market sentiment and investor behavior, we strive to develop a more holistic and dynamic risk assessment model. One of the key challenges lies in the inherent noise in raw data, which can compromise the precision of statistical analyses. Moreover, textual data about industry analysis necessitates a deeper understanding facilitated by pre-trained language models. To tackle these issues, we propose a dual-pronged approach to industry trend analysis: explicit and implicit analysis. For explicit analysis, we employ a hierarchical data analysis methodology that spans the industry and individual listed company levels. This strategic breakdown helps mitigate the impact of data noise, ensuring a more accurate portrayal of industry dynamics. In parallel, we introduce implicit analysis, where we pre-train an SML to interpret industry trends within the context of current news events. This approach leverages the extensive knowledge embedded in the pre-training corpus, enabling a nuanced understanding of industry trends and their underlying drivers. Experimental results based on our proposed methodology demonstrate its effectiveness in delivering robust industry trend analyses, underscoring its potential to revolutionize risk assessment practices across industries.
Related papers
- FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
This paper presents FinRobot, the first AI agent framework specifically designed for equity research.
FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst.
Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors.
arXiv Detail & Related papers (2024-11-13T17:38:07Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - A Novel Framework for Analyzing Structural Transformation in Data-Constrained Economies Using Bayesian Modeling and Machine Learning [0.0]
The shift from agrarian economies to more diversified industrial and service-based systems is a key driver of economic development.
In low- and middle-income countries (LMICs), data scarcity and unreliability hinder accurate assessments of this process.
This paper presents a novel statistical framework designed to address these challenges by integrating Bayesian hierarchical modeling, machine learning-based data imputation, and factor analysis.
arXiv Detail & Related papers (2024-09-25T08:39:41Z) - Long Short-Term Memory Pattern Recognition in Currency Trading [0.0]
Wyckoff Phases is a framework devised by Richard D. Wyckoff in the early 20th century.
The research explores the phases of trading range and secondary test, elucidating their significance in understanding market dynamics.
By dissecting the intricacies of these phases, the study sheds light on the creation of liquidity through market structure.
The study highlights the transformative potential of AI-driven approaches in financial analysis and trading strategies.
arXiv Detail & Related papers (2024-02-23T12:59:49Z) - AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis [0.0]
Supply chain risk assessment (SCRA) has witnessed a profound evolution through the integration of artificial intelligence (AI) and machine learning (ML) techniques.
Previous reviews have outlined established methodologies but have overlooked emerging AI/ML techniques.
This paper conducts a systematic literature review combined with a comprehensive bibliometric analysis.
arXiv Detail & Related papers (2023-12-12T17:47:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Modeling and mitigation of occupational safety risks in dynamic
industrial environments [0.0]
This article proposes a method to enable continuous and quantitative assessment of safety risks in a data-driven manner.
A fully Bayesian approach is developed to calibrate this model from safety data in an online fashion.
The proposed model can be leveraged for automated decision making.
arXiv Detail & Related papers (2022-05-02T13:04:25Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.