Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges
- URL: http://arxiv.org/abs/2507.19672v1
- Date: Fri, 25 Jul 2025 20:52:58 GMT
- Title: Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges
- Authors: Haoran Lu, Luyang Fang, Ruidong Zhang, Xinliang Li, Jiazhang Cai, Huimin Cheng, Lin Tang, Ziyu Liu, Zeliang Sun, Tao Wang, Yingchuan Zhang, Arif Hassan Zidan, Jinwen Xu, Jincheng Yu, Meizhi Yu, Hanqi Jiang, Xilin Gong, Weidi Luo, Bolun Sun, Yongkai Chen, Terry Ma, Shushan Wu, Yifan Zhou, Junhao Chen, Haotian Xiang, Jing Zhang, Afrar Jahin, Wei Ruan, Ke Deng, Yi Pan, Peilong Wang, Jiahui Li, Zhengliang Liu, Lu Zhang, Lin Zhao, Wei Liu, Dajiang Zhu, Xin Xing, Fei Dou, Wei Zhang, Chao Huang, Rongjie Liu, Mengrui Zhang, Yiwen Liu, Xiaoxiao Sun, Qin Lu, Zhen Xiang, Wenxuan Zhong, Tianming Liu, Ping Ma,
- Abstract summary: This survey provides a comprehensive overview of alignment techniques, training protocols, and empirical findings in large language models (LLMs) alignment.<n>We analyze the development of alignment methods across diverse paradigms, characterizing the fundamental trade-offs between core alignment objectives.<n>We discuss state-of-the-art techniques, including Direct Preference Optimization (DPO), Constitutional AI, brain-inspired methods, and alignment uncertainty quantification (AUQ)
- Score: 47.14342587731284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to the remarkable capabilities and growing impact of large language models (LLMs), they have been deeply integrated into many aspects of society. Thus, ensuring their alignment with human values and intentions has emerged as a critical challenge. This survey provides a comprehensive overview of practical alignment techniques, training protocols, and empirical findings in LLM alignment. We analyze the development of alignment methods across diverse paradigms, characterizing the fundamental trade-offs between core alignment objectives. Our analysis shows that while supervised fine-tuning enables basic instruction-following, preference-based methods offer more flexibility for aligning with nuanced human intent. We discuss state-of-the-art techniques, including Direct Preference Optimization (DPO), Constitutional AI, brain-inspired methods, and alignment uncertainty quantification (AUQ), highlighting their approaches to balancing quality and efficiency. We review existing evaluation frameworks and benchmarking datasets, emphasizing limitations such as reward misspecification, distributional robustness, and scalable oversight. We summarize strategies adopted by leading AI labs to illustrate the current state of practice. We conclude by outlining open problems in oversight, value pluralism, robustness, and continuous alignment. This survey aims to inform both researchers and practitioners navigating the evolving landscape of LLM alignment.
Related papers
- Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities [62.05713042908654]
This paper provides a review of advances in Large Language Models (LLMs) alignment through the lens of inverse reinforcement learning (IRL)<n>We highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift.
arXiv Detail & Related papers (2025-07-17T14:22:24Z) - Adversarial Testing in LLMs: Insights into Decision-Making Vulnerabilities [5.0778942095543576]
This paper introduces an adversarial evaluation framework designed to systematically stress-test the decision-making processes of Large Language Models.<n>We apply this framework to several state-of-the-art LLMs, including GPT-3.5, GPT-4, Gemini-1.5, and DeepSeek-V3.<n>Our findings highlight distinct behavioral patterns across models and emphasize the importance of adaptability and fairness recognition for trustworthy AI deployment.
arXiv Detail & Related papers (2025-05-19T14:50:44Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - A Unified Understanding and Evaluation of Steering Methods [17.420727709895736]
Steering methods provide a practical approach to controlling large language models by applying steering vectors to intermediate activations.<n>Despite their growing importance, the field lacks a unified understanding and consistent evaluation across tasks and datasets.<n>This paper introduces a unified framework for analyzing and evaluating steering methods, formalizing their core principles and offering theoretical insights into their effectiveness.
arXiv Detail & Related papers (2025-02-04T20:55:24Z) - Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
Large Language Models (LLMs) exhibit remarkably powerful capabilities.
One of the crucial factors to achieve success is aligning the LLM's output with human preferences.
We decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm.
arXiv Detail & Related papers (2024-09-04T15:11:55Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
We critically assess 23 state-of-the-art Large Language Models (LLMs) benchmarks.
Our research uncovered significant limitations, including biases, difficulties in measuring genuine reasoning, adaptability, implementation inconsistencies, prompt engineering complexity, diversity, and the overlooking of cultural and ideological norms.
arXiv Detail & Related papers (2024-02-15T11:08:10Z) - A Survey of Contextual Optimization Methods for Decision Making under
Uncertainty [47.73071218563257]
This review article identifies three main frameworks for learning policies from data and discusses their strengths and limitations.
We present the existing models and methods under a uniform notation and terminology and classify them according to the three main frameworks.
arXiv Detail & Related papers (2023-06-17T15:21:02Z) - Methodological reflections for AI alignment research using human
feedback [0.0]
AI alignment aims to investigate whether AI technologies align with human interests and values and function in a safe and ethical manner.
LLMs have the potential to exhibit unintended behavior due to their ability to learn and adapt in ways that are difficult to predict.
arXiv Detail & Related papers (2022-12-22T14:27:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.