論文の概要: Active learning using region-based sampling
- arxiv url: http://arxiv.org/abs/2303.02721v1
- Date: Sun, 5 Mar 2023 17:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 18:06:07.124462
- Title: Active learning using region-based sampling
- Title(参考訳): 領域ベースサンプリングを用いたアクティブラーニング
- Authors: Sanjoy Dasgupta and Yoav Freund
- Abstract要約: 本稿では,距離空間におけるデータに対する汎用能動学習手法を提案する。
このアルゴリズムは、異なる大きさの地区の集合を維持し、ラベルクエリを使用して、ある特定のラベルに対して強い偏見を持つものを特定する。
- 参考スコア(独自算出の注目度): 14.026145874102038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a general-purpose active learning scheme for data in metric
spaces. The algorithm maintains a collection of neighborhoods of different
sizes and uses label queries to identify those that have a strong bias towards
one particular label; when two such neighborhoods intersect and have different
labels, the region of overlap is treated as a ``known unknown'' and is a target
of future active queries. We give label complexity bounds for this method that
do not rely on assumptions about the data and we instantiate them in several
cases of interest.
- Abstract(参考訳): 距離空間のデータに対する汎用能動学習方式を提案する。
このアルゴリズムは、異なる大きさの地区の集合を維持し、ラベルクエリを使用して、ある特定のラベルに対して強いバイアスを持つ地域を特定する。
本手法では,データに関する仮定に依存しないラベルの複雑性境界を付与し,いくつかのケースでそれらをインスタンス化する。
関連論文リスト
- A Review of Pseudo-Labeling for Computer Vision [2.79239659248295]
ディープニューラルネットワークは、しばしば効果的に一般化するためにラベル付きサンプルの大きなデータセットを必要とする。
活発な研究の重要な領域は半教師あり学習であり、代わりに大量の(容易に取得された)未ラベルのサンプルを使おうとする。
本研究では,自己監督手法と教師なし手法の両方において,擬似ラベルのより広範な解釈について検討する。
論文 参考訳(メタデータ) (2024-08-13T22:17:48Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
そこで本研究では,基礎的真理推定手法に適合する新しい局所化アルゴリズムを提案する。
また,本アルゴリズムは,TexBiGデータセット上でのトレーニングにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-18T13:08:44Z) - Multi-Label Knowledge Distillation [86.03990467785312]
本稿では,新しい多ラベル知識蒸留法を提案する。
一方、マルチラベル学習問題をバイナリ分類問題に分割することにより、ロジットからの情報的意味知識を利用する。
一方,ラベルワイド埋め込みの構造情報を活用することにより,学習した特徴表現の識別性を向上する。
論文 参考訳(メタデータ) (2023-08-12T03:19:08Z) - Robust Assignment of Labels for Active Learning with Sparse and Noisy
Annotations [0.17188280334580192]
監視された分類アルゴリズムは、世界中の多くの現実の問題を解決するために使用される。
残念なことに、多くのタスクに対して良質なアノテーションを取得することは、実際に行うには不可能か、あるいはコストがかかりすぎます。
サンプル空間のラベルのない部分を利用する2つの新しいアノテーション統一アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-25T19:40:41Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
アクティブラーニング(英: Active Learning)は、ラベリングのための最も重要なサンプルを選択することで、高価なラベリングの問題に対処する研究分野である。
アクティブな学習環境における初期ラベル付けのための最も情報性の高いサンプル群を選択するために,多様性に基づく新しい初期データセット選択アルゴリズムを提案する。
また、一貫性に基づく埋め込みの多様性に基づくサンプリングを用いた、新しいアクティブな学習クエリ戦略を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:11:55Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - Few-shot Learning for Multi-label Intent Detection [59.66787898744991]
State-of-the-art work estimates label-instancelevance scores and using threshold to select multiple associated intent labels。
2つのデータセットの実験により、提案モデルが1ショットと5ショットの両方の設定において強いベースラインを著しく上回ることが示された。
論文 参考訳(メタデータ) (2020-10-11T14:42:18Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
我々は、入力(予測可能)に応じて予測しやすく、他の可能なラベル(表現可能)をうまく回復できるランドマークとして、ラベルの小さなサブセットを選択することを提案する。
我々は,ADM(Alternating Direction Method)を用いてこの問題を解決する。実世界のデータセットに関する実証研究により,本手法が他の最先端手法よりも優れた分類性能を実現することを示す。
論文 参考訳(メタデータ) (2020-08-16T11:07:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。