RQAT-INR: Improved Implicit Neural Image Compression
- URL: http://arxiv.org/abs/2303.03028v1
- Date: Mon, 6 Mar 2023 10:59:45 GMT
- Title: RQAT-INR: Improved Implicit Neural Image Compression
- Authors: Bharath Bhushan Damodaran, Muhammet Balcilar, Franck Galpin, and
Pierre Hellier
- Abstract summary: In this research, we show that INR based image has a lower complexity than VAE based approaches.
We also propose several improvements for INR-based image and baseline model by a large margin.
- Score: 4.449835214520727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep variational autoencoders for image and video compression have gained
significant attraction in the recent years, due to their potential to offer
competitive or better compression rates compared to the decades long
traditional codecs such as AVC, HEVC or VVC. However, because of complexity and
energy consumption, these approaches are still far away from practical usage in
industry. More recently, implicit neural representation (INR) based codecs have
emerged, and have lower complexity and energy usage to classical approaches at
decoding. However, their performances are not in par at the moment with
state-of-the-art methods. In this research, we first show that INR based image
codec has a lower complexity than VAE based approaches, then we propose several
improvements for INR-based image codec and outperformed baseline model by a
large margin.
Related papers
- NVRC: Neural Video Representation Compression [13.131842990481038]
We propose a novel INR-based video compression framework, Neural Video Representation Compression (NVRC)
NVRC, for the first time, is able to optimize an INR-based video in a fully end-to-end manner.
Our experiments show that NVRC outperforms many conventional and learning-based benchmark entropy.
arXiv Detail & Related papers (2024-09-11T16:57:12Z) - PNVC: Towards Practical INR-based Video Compression [14.088444622391501]
We propose a novel INR-based coding framework, PNVC, which innovatively combines autoencoder-based and overfitted solutions.
PNVC achieves nearly 35%+ BD-rate savings against HEVC HM 18.0 (LD) - almost 10% more compared to one of the state-of-the-art INR-based codecs.
arXiv Detail & Related papers (2024-09-02T05:31:11Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - An Efficient Implicit Neural Representation Image Codec Based on Mixed Autoregressive Model for Low-Complexity Decoding [43.43996899487615]
Implicit Neural Representation (INR) for image compression is an emerging technology that offers two key benefits compared to cutting-edge autoencoder models.
We introduce a new Mixed AutoRegressive Model (MARM) to significantly reduce the decoding time for the current INR.
MARM includes our proposed AutoRegressive Upsampler (ARU) blocks, which are highly efficient, and ARM from previous work to balance decoding time and reconstruction quality.
arXiv Detail & Related papers (2024-01-23T09:37:58Z) - HiNeRV: Video Compression with Hierarchical Encoding-based Neural
Representation [14.088444622391501]
Implicit Representations (INRs) have previously been used to represent and compress image and video content.
Existing INR-based methods have failed to deliver rate quality performance comparable with the state of the art in video compression.
We propose HiNeRV, an INR that combines light weight layers with hierarchical positional encodings.
arXiv Detail & Related papers (2023-06-16T12:59:52Z) - Computationally-Efficient Neural Image Compression with Shallow Decoders [43.115831685920114]
This paper takes a step forward towards closing the gap in decoding complexity by using a shallow or even linear decoding transform resembling that of JPEG.
We exploit the often asymmetrical budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding.
arXiv Detail & Related papers (2023-04-13T03:38:56Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Perceptual Learned Video Compression with Recurrent Conditional GAN [158.0726042755]
We propose a Perceptual Learned Video Compression (PLVC) approach with recurrent conditional generative adversarial network.
PLVC learns to compress video towards good perceptual quality at low bit-rate.
The user study further validates the outstanding perceptual performance of PLVC in comparison with the latest learned video compression approaches.
arXiv Detail & Related papers (2021-09-07T13:36:57Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.