論文の概要: Can We Scale Transformers to Predict Parameters of Diverse ImageNet
Models?
- arxiv url: http://arxiv.org/abs/2303.04143v1
- Date: Tue, 7 Mar 2023 18:56:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 14:10:08.038640
- Title: Can We Scale Transformers to Predict Parameters of Diverse ImageNet
Models?
- Title(参考訳): 逆画像ネットモデルのパラメータ予測に変換器をスケールできるか?
- Authors: Boris Knyazev, Doha Hwang, Simon Lacoste-Julien
- Abstract要約: 私たちは、他のニューラルネットワークの高品質なパラメータを予測できる単一のニューラルネットワークをリリースします。
PyTorchで利用可能な多様なImageNetモデルのトレーニングを強化することができます。
他のデータセットに転送されると、予測パラメータを持つモデルはより早く収束し、競合する最終性能に達する。
- 参考スコア(独自算出の注目度): 23.668513148189344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretraining a neural network on a large dataset is becoming a cornerstone in
machine learning that is within the reach of only a few communities with
large-resources. We aim at an ambitious goal of democratizing pretraining.
Towards that goal, we train and release a single neural network that can
predict high quality ImageNet parameters of other neural networks. By using
predicted parameters for initialization we are able to boost training of
diverse ImageNet models available in PyTorch. When transferred to other
datasets, models initialized with predicted parameters also converge faster and
reach competitive final performance.
- Abstract(参考訳): 大規模なデータセット上でニューラルネットワークを事前トレーニングすることは、大規模なリソースを持つ少数のコミュニティの手に届く機械学習の基盤になりつつある。
プレトレーニングの民主化という野心的な目標を目指しています。
その目標に向けて、私たちは、他のニューラルネットワークの高品質なイメージネットパラメータを予測できる単一のニューラルネットワークを訓練し、リリースします。
初期化に予測パラメータを使用することで、PyTorchで利用可能なさまざまなImageNetモデルのトレーニングを強化することができます。
他のデータセットに転送されると、予測パラメータで初期化されたモデルもより早く収束し、競合する最終性能に達する。
関連論文リスト
- Neural Metamorphosis [72.88137795439407]
本稿では,ニューラル・メタモルファス(NeuMeta)と呼ばれる,自己変形可能なニューラルネットワークの構築を目的とした新たな学習パラダイムを提案する。
NeuMetaはニューラルネットワークの連続重み多様体を直接学習する。
75%の圧縮速度でもフルサイズの性能を維持する。
論文 参考訳(メタデータ) (2024-10-10T14:49:58Z) - SODAWideNet++: Combining Attention and Convolutions for Salient Object Detection [3.2586315449885106]
本稿では,Salient Object Detectionのために設計されたSODAWideNet++と呼ばれる新しいエンコーダ・デコーダ型ニューラルネットワークを提案する。
視覚変換器が初期からグローバルな受容場を得る能力に触発されて、注意誘導長距離特徴抽出(AGLRFE)モジュールを導入する。
ImageNet事前トレーニングの現在のパラダイムとは対照的に、提案したモデルエンドツーエンドの事前トレーニングのためにアノテーションをバイナライズすることで、COCOセマンティックセグメンテーションデータセットから118Kの注釈付き画像を修正します。
論文 参考訳(メタデータ) (2024-08-29T15:51:06Z) - Efficient Training with Denoised Neural Weights [65.14892033932895]
この研究は、初期化のために神経重みを合成するウェイトジェネレータを構築するための新しい一歩を踏み出した。
本稿では,モデル重みの収集を容易にするために,GANを用いた画像間翻訳タスクを例に挙げる。
拡散モデルによって予測される重み付き画像翻訳モデルを初期化することにより、トレーニングは43.3秒しか必要としない。
論文 参考訳(メタデータ) (2024-07-16T17:59:42Z) - Learning to Generate Parameters of ConvNets for Unseen Image Data [36.68392191824203]
ConvNetは大量の画像データに依存しており、ネットワークパラメータを学習するための反復最適化アルゴリズムを採用している。
本稿では,新しい学習パラダイムを提案し,予測タスクにConvNetのパラメータ学習を定式化する。
提案手法は,2種類の画像データセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:26:18Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with
Point-to-Pixel Prompting [94.11915008006483]
本稿では,ポイントクラウド解析のための新しいポイント・ツー・Pixelを提案する。
ScanObjectNNの最も難しい設定では,89.3%の精度が得られる。
また,本フレームワークは,ModelNet分類とShapeNet Part Codeで非常に競争力のある性能を示す。
論文 参考訳(メタデータ) (2022-08-04T17:59:03Z) - Parameter Prediction for Unseen Deep Architectures [23.79630072083828]
我々は、他のネットワークを訓練する過去の知識を利用して、ディープラーニングを使ってパラメータを直接予測できるかどうか検討する。
本稿では,CPU上でも1秒の間隔で1回のフォワードパスで性能パラメータを予測できるハイパーネットワークを提案する。
提案したモデルは、目に見えない多様なネットワーク上で驚くほど優れた性能を達成する。
論文 参考訳(メタデータ) (2021-10-25T16:52:33Z) - Point-Cloud Deep Learning of Porous Media for Permeability Prediction [0.0]
デジタル画像から多孔質媒体の透過性を予測するための新しいディープラーニングフレームワークを提案する。
我々は、固体行列と細孔空間の境界を点雲としてモデル化し、それらをポイントネットアーキテクチャに基づくニューラルネットワークへの入力として供給する。
論文 参考訳(メタデータ) (2021-07-18T22:59:21Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。