Clustering large 3D volumes: A sampling-based approach
- URL: http://arxiv.org/abs/2303.04188v1
- Date: Tue, 7 Mar 2023 19:23:33 GMT
- Title: Clustering large 3D volumes: A sampling-based approach
- Authors: Thomas Lang
- Abstract summary: In many applications of X-ray computed tomography, an unsupervised segmentation of the reconstructed 3D volumes forms an important step in the image processing chain.
We introduce a novel clustering technique based on random sampling, which allows for the voxelwise classification of arbitrarily large volumes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many applications of X-ray computed tomography, an unsupervised
segmentation of the reconstructed 3D volumes forms an important step in the
image processing chain for further investigation of the digitized object.
Therefore, the goal is to train a clustering algorithm on the volume, which
produces a voxelwise classification by assigning a cluster index to each voxel.
However, clustering methods, e.g., K-Means, typically have an asymptotic
polynomial runtime with respect to the dataset size, and thus, these techniques
are rarely applicable to large volumes. In this work, we introduce a novel
clustering technique based on random sampling, which allows for the voxelwise
classification of arbitrarily large volumes. The presented method conducts
efficient linear passes over the data to extract a representative random sample
of a fixed size on which the classifier can be trained. Then, a final linear
pass performs the segmentation and assigns a cluster index to each individual
voxel. Quantitative and qualitative evaluations show that excellent results can
be achieved even with a very small sample size. Consequently, the unsupervised
segmentation by means of clustering becomes feasible for arbitrarily large
volumes.
Related papers
- Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Fast conformational clustering of extensive molecular dynamics
simulation data [19.444636864515726]
We present an unsupervised data processing workflow that is specifically designed to obtain a fast conformational clustering of long trajectories.
We combine two dimensionality reduction algorithms (cc_analysis and encodermap) with a density-based spatial clustering algorithm (HDBSCAN)
With the help of four test systems we illustrate the capability and performance of this clustering workflow.
arXiv Detail & Related papers (2023-01-11T14:36:43Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Primitive-based Shape Abstraction via Nonparametric Bayesian Inference [29.7543198254021]
We propose a novel non-parametric Bayesian statistical method to infer an abstraction, consisting of an unknown number of geometric primitives, from a point cloud.
Our method outperforms the state-of-the-art in terms of accuracy and is generalizable to various types of objects.
arXiv Detail & Related papers (2022-03-28T13:00:06Z) - Self-Evolutionary Clustering [1.662966122370634]
Most existing deep clustering methods are based on simple distance comparison and highly dependent on the target distribution generated by a handcrafted nonlinear mapping.
A novel modular Self-Evolutionary Clustering (Self-EvoC) framework is constructed, which boosts the clustering performance by classification in a self-supervised manner.
The framework can efficiently discriminate sample outliers and generate better target distribution with the assistance of self-supervised.
arXiv Detail & Related papers (2022-02-21T19:38:18Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
Clustering algorithms are one of the main analytical methods to detect patterns in unlabeled data.
In this paper, we present a wholly different way of clustering points in 2-dimensional space, inspired by how humans cluster data.
Our approach, Visual Clustering, has several advantages over traditional clustering algorithms.
arXiv Detail & Related papers (2021-10-06T06:19:30Z) - Weighted Sparse Subspace Representation: A Unified Framework for
Subspace Clustering, Constrained Clustering, and Active Learning [0.3553493344868413]
We first propose a novel spectral-based subspace clustering algorithm that seeks to represent each point as a sparse convex combination of a few nearby points.
We then extend the algorithm to constrained clustering and active learning settings.
Our motivation for developing such a framework stems from the fact that typically either a small amount of labelled data is available in advance; or it is possible to label some points at a cost.
arXiv Detail & Related papers (2021-06-08T13:39:43Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Progressive Cluster Purification for Unsupervised Feature Learning [48.87365358296371]
In unsupervised feature learning, sample specificity based methods ignore the inter-class information.
We propose a novel clustering based method, which excludes class inconsistent samples during progressive cluster formation.
Our approach, referred to as Progressive Cluster Purification (PCP), implements progressive clustering by gradually reducing the number of clusters during training.
arXiv Detail & Related papers (2020-07-06T08:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.