Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics
- URL: http://arxiv.org/abs/2303.04270v4
- Date: Tue, 14 May 2024 11:35:08 GMT
- Title: Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics
- Authors: Gabriel T. Landi, Michael J. Kewming, Mark T. Mitchison, Patrick P. Potts,
- Abstract summary: Continuously measured quantum systems are characterized by an output current.
The many tools used to describe current fluctuations are scattered across different communities.
Our goal with this tutorial is to provide a unified toolbox for describing current fluctuations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuously measured quantum systems are characterized by an output current, in the form of a stochastic and correlated time series which conveys crucial information about the underlying quantum system. The many tools used to describe current fluctuations are scattered across different communities: quantum opticians often use stochastic master equations, while a prevalent approach in condensed matter physics is provided by full counting statistics. These, however, are simply different sides of the same coin. Our goal with this tutorial is to provide a unified toolbox for describing current fluctuations. This not only provides novel insights, by bringing together different fields in physics, but also yields various analytical and numerical tools for computing quantities of interest. We illustrate our results with various pedagogical examples, and connect them with topical fields of research, such as waiting-time statistics, quantum metrology, thermodynamic uncertainty relations, quantum point contacts and Maxwell's demons.
Related papers
- Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Complete characterization of quantum correlations by randomized
measurements [0.832184180529969]
We provide a method to measure any locally invariant property of quantum states using locally randomized measurements.
We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation.
Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits.
arXiv Detail & Related papers (2022-12-15T15:22:28Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - From many-body to many-time physics [0.0]
Multi-time quantum processes endowed with the same richness as many-body physics.
We show how surprisingly accessible, yet under-explored, these phenomena are in nascent quantum processors.
arXiv Detail & Related papers (2021-07-29T12:48:10Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Reading a qubit quantum state with a quantum meter: time unfolding of
quantum Darwinism and quantum information flux [0.0]
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with.
We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours.
arXiv Detail & Related papers (2020-01-30T20:37:03Z) - Quantum information scrambling in a trapped-ion quantum simulator with
tunable range interactions [0.0]
In ergodic many-body quantum systems, locally encoded quantum information becomes inaccessible to local measurements.
We present first experimental demonstrations of quantum information scrambling on a 10-qubit trapped-ion quantum simulator.
We also analyze the role of decoherence in our system by comparing our measurements to numerical simulations and by measuring R'enyi entanglement entropies.
arXiv Detail & Related papers (2020-01-07T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.