DroNeRF: Real-time Multi-agent Drone Pose Optimization for Computing
Neural Radiance Fields
- URL: http://arxiv.org/abs/2303.04322v2
- Date: Sun, 6 Aug 2023 17:20:41 GMT
- Title: DroNeRF: Real-time Multi-agent Drone Pose Optimization for Computing
Neural Radiance Fields
- Authors: Dipam Patel and Phu Pham and Aniket Bera
- Abstract summary: We present a novel optimization algorithm called DroNeRF for the autonomous positioning of monocular camera drones around an object.
NeRF is a novel view synthesis technique used to generate new views of an object or scene from a set of input images.
- Score: 19.582873794287632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel optimization algorithm called DroNeRF for the autonomous
positioning of monocular camera drones around an object for real-time 3D
reconstruction using only a few images. Neural Radiance Fields or NeRF, is a
novel view synthesis technique used to generate new views of an object or scene
from a set of input images. Using drones in conjunction with NeRF provides a
unique and dynamic way to generate novel views of a scene, especially with
limited scene capabilities of restricted movements. Our approach focuses on
calculating optimized pose for individual drones while solely depending on the
object geometry without using any external localization system. The unique
camera positioning during the data-capturing phase significantly impacts the
quality of the 3D model. To evaluate the quality of our generated novel views,
we compute different perceptual metrics like the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure(SSIM). Our work demonstrates the
benefit of using an optimal placement of various drones with limited mobility
to generate perceptually better results.
Related papers
- SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization [16.460851701725392]
We present a novel approach that optimize radiance fields with scene graphs to mitigate the influence of outlier poses.
Our method incorporates an adaptive inlier-outlier confidence estimation scheme based on scene graphs.
We also introduce an effective intersection-over-union (IoU) loss to optimize the camera pose and surface geometry.
arXiv Detail & Related papers (2024-07-17T15:50:17Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - MuRF: Multi-Baseline Radiance Fields [117.55811938988256]
We present Multi-Baseline Radiance Fields (MuRF), a feed-forward approach to solving sparse view synthesis.
MuRF achieves state-of-the-art performance across multiple different baseline settings.
We also show promising zero-shot generalization abilities on the Mip-NeRF 360 dataset.
arXiv Detail & Related papers (2023-12-07T18:59:56Z) - rpcPRF: Generalizable MPI Neural Radiance Field for Satellite Camera [0.76146285961466]
This paper presents rpcPRF, a Multiplane Images (MPI) based Planar neural Radiance Field for Rational Polynomial Camera (RPC)
We propose to use reprojection supervision to induce the predicted MPI to learn the correct geometry between the 3D coordinates and the images.
We remove the stringent requirement of dense depth supervision from deep multiview-stereo-based methods by introducing rendering techniques of radiance fields.
arXiv Detail & Related papers (2023-10-11T04:05:11Z) - Multi-Plane Neural Radiance Fields for Novel View Synthesis [5.478764356647437]
Novel view synthesis is a long-standing problem that revolves around rendering frames of scenes from novel camera viewpoints.
In this work, we examine the performance, generalization, and efficiency of single-view multi-plane neural radiance fields.
We propose a new multiplane NeRF architecture that accepts multiple views to improve the synthesis results and expand the viewing range.
arXiv Detail & Related papers (2023-03-03T06:32:55Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - VMRF: View Matching Neural Radiance Fields [57.93631771072756]
VMRF is an innovative view matching NeRF that enables effective NeRF training without requiring prior knowledge in camera poses or camera pose distributions.
VMRF introduces a view matching scheme, which exploits unbalanced optimal transport to produce a feature transport plan for mapping a rendered image with randomly camera pose to the corresponding real image.
With the feature transport plan as the guidance, a novel pose calibration technique is designed which rectifies the initially randomized camera poses by predicting relative pose between the pair of rendered and real images.
arXiv Detail & Related papers (2022-07-06T12:26:40Z) - T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis [32.878225196378374]
We introduce a neural representation based on an image formation model for continuous-wave ToF cameras.
We show that this approach improves robustness of dynamic scene reconstruction to erroneous calibration and large motions.
arXiv Detail & Related papers (2021-09-30T17:12:59Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
We propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect camera poses.
BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time.
This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems.
arXiv Detail & Related papers (2021-04-13T17:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.