論文の概要: Dynamic Scenario Representation Learning for Motion Forecasting with
Heterogeneous Graph Convolutional Recurrent Networks
- arxiv url: http://arxiv.org/abs/2303.04364v1
- Date: Wed, 8 Mar 2023 04:10:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 15:09:48.268367
- Title: Dynamic Scenario Representation Learning for Motion Forecasting with
Heterogeneous Graph Convolutional Recurrent Networks
- Title(参考訳): 不均一グラフ畳み込みリカレントネットワークを用いた動き予測のための動的シナリオ表現学習
- Authors: Xing Gao, Xiaogang Jia, Yikang Li, and Hongkai Xiong
- Abstract要約: 進化するシナリオをモデル化するために、動的異種グラフを利用する。
異種グラフリカレントネットワークを設計し、多様な相互作用情報を集約する。
動作予測デコーダを用いて,エージェントの現実的かつ多モーダルな将来の軌跡を予測する。
- 参考スコア(独自算出の注目度): 25.383615554172778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the complex and changing interactions in dynamic scenarios, motion
forecasting is a challenging problem in autonomous driving. Most existing works
exploit static road graphs to characterize scenarios and are limited in
modeling evolving spatio-temporal dependencies in dynamic scenarios. In this
paper, we resort to dynamic heterogeneous graphs to model the scenario. Various
scenario components including vehicles (agents) and lanes, multi-type
interactions, and their changes over time are jointly encoded. Furthermore, we
design a novel heterogeneous graph convolutional recurrent network, aggregating
diverse interaction information and capturing their evolution, to learn to
exploit intrinsic spatio-temporal dependencies in dynamic graphs and obtain
effective representations of dynamic scenarios. Finally, with a motion
forecasting decoder, our model predicts realistic and multi-modal future
trajectories of agents and outperforms state-of-the-art published works on
several motion forecasting benchmarks.
- Abstract(参考訳): 動的シナリオにおける複雑な相互作用と変化のため、動き予測は自律運転において難しい問題である。
既存の作品の多くは静的な道路グラフを利用してシナリオを特徴付けており、動的シナリオにおける時空間依存の進化のモデリングに制限がある。
本稿では,シナリオをモデル化するために動的不均一グラフを用いる。
車両(エージェント)や車線を含む様々なシナリオコンポーネント、多種間相互作用、およびそれらの経時変化を共同符号化する。
さらに,多様な相互作用情報を集約し,その進化を捉えた新しい異種グラフ畳み込みリカレントネットワークを設計し,動的グラフの時空間依存性を生かし,動的シナリオの効率的な表現を得る。
最後に,動き予測デコーダを用いて,エージェントの現実的および多変量的未来的軌跡を予測し,いくつかの動き予測ベンチマークで公表された最新成果を上回っている。
関連論文リスト
- UnityGraph: Unified Learning of Spatio-temporal features for Multi-person Motion Prediction [13.052342503276936]
多対人動作予測は、重要な実世界の応用を持つ複雑な新興分野である。
本稿では,複数の時間的特徴を全体として扱う新しいグラフ構造UnityGraphを提案し,モデルコヒーレンスと結合時間的特徴を向上する。
提案手法は最先端の性能を達成し,その有効性と革新的な設計を実証する。
論文 参考訳(メタデータ) (2024-11-06T08:05:36Z) - Multi-View Neural Differential Equations for Continuous-Time Stream Data in Long-Term Traffic Forecasting [10.70370586311912]
我々は,Multi-View Neural Differential Equationsと呼ばれる新しいNDEアーキテクチャを提案する。
我々のモデルは、遅延した複数の表現を学習することで、現在の状態、遅延状態、および異なる状態変数(ビュー)の傾向を捉えます。
提案手法は最先端技術より優れ,ノイズや入力の欠如による堅牢性を実現している。
論文 参考訳(メタデータ) (2024-08-12T18:49:02Z) - Disentangled Neural Relational Inference for Interpretable Motion
Prediction [38.40799770648501]
グラフベース表現と時系列モデルを統合した変分自動エンコーダフレームワークを開発した。
本モデルでは,対話を特徴付ける解釈可能なエッジ特徴を付加した動的相互作用グラフを推論する。
シミュレーションと実世界の両方のデータセットに関する広範な実験を通じて、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2024-01-07T22:49:24Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
4次元連続時間変動関数を用いて動的シーンをモデル化する表現であるMoCo-Flowを紹介する。
私たちの研究の中心には、運動フロー上の運動コンセンサス正規化によって制約される、新しい最適化の定式化がある。
複雑度の異なる人間の動きを含む複数のデータセット上でMoCo-Flowを広範囲に評価した。
論文 参考訳(メタデータ) (2021-06-08T16:03:50Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
本稿では,関係構造を明示的に認識し,潜在相互作用グラフによる予測を行う汎用軌道予測フレームワークを提案する。
将来の行動の不確実性を考慮すると、モデルはマルチモーダルな予測仮説を提供するように設計されている。
トレーニング効率を向上し、収束を加速するだけでなく、モデル性能も向上する2段トレーニングパイプラインを導入する。
論文 参考訳(メタデータ) (2020-03-31T02:49:23Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。