論文の概要: Nonlinear Kalman Filtering with Reparametrization Gradients
- arxiv url: http://arxiv.org/abs/2303.04450v1
- Date: Wed, 8 Mar 2023 09:00:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 14:41:58.932339
- Title: Nonlinear Kalman Filtering with Reparametrization Gradients
- Title(参考訳): リパラメトリゼーション勾配を用いた非線形カルマンフィルタ
- Authors: San Gultekin, Brendan Kitts, Aaron Flores, and John Paisley
- Abstract要約: リパラメトリゼーション勾配を利用した非線形カルマンフィルタを提案する。
本稿では、アルファ発散の代わりに最適化可能なエネルギー関数に基づく代替定式化を提案する。
- 参考スコア(独自算出の注目度): 5.9889448851611355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel nonlinear Kalman filter that utilizes reparametrization
gradients. The widely used parametric approximation is based on a jointly
Gaussian assumption of the state-space model, which is in turn equivalent to
minimizing an approximation to the Kullback-Leibler divergence. It is possible
to obtain better approximations using the alpha divergence, but the resulting
problem is substantially more complex. In this paper, we introduce an alternate
formulation based on an energy function, which can be optimized instead of the
alpha divergence. The optimization can be carried out using reparametrization
gradients, a technique that has recently been utilized in a number of deep
learning models.
- Abstract(参考訳): リパラメトリゼーション勾配を利用した非線形カルマンフィルタを提案する。
広く使われているパラメトリック近似は状態空間モデルのガウス的仮定に基づいているが、これはクルバック・リーバーの発散に対する近似の最小化と同値である。
アルファ発散を用いてより良い近似を得ることができるが、結果として生じる問題はより複雑である。
本稿では、アルファ発散の代わりに最適化可能なエネルギー関数に基づく代替定式化を提案する。
この最適化は、最近多くのディープラーニングモデルで使われている手法である再パラメータ化勾配を用いて行うことができる。
関連論文リスト
- An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
機械学習の応用では、各損失関数は非負であり、平方根とその実数値平方根の構成として表すことができる。
本稿では, ガウス・ニュートン法やレフスカルト法を適用して, 滑らかだが非負な関数の平均を最小化する方法を示す。
論文 参考訳(メタデータ) (2024-07-05T08:53:06Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Variational sparse inverse Cholesky approximation for latent Gaussian
processes via double Kullback-Leibler minimization [6.012173616364571]
後肢の変分近似とSIC制限したKulback-Leibler-Optimal近似を併用した。
この設定のために、我々の変分近似は反復毎の多対数時間で勾配降下によって計算できる。
本稿では,DKLGP(Double-Kullback-Leibler-Optimal Gaussian-process approximation)を提案する。
論文 参考訳(メタデータ) (2023-01-30T21:50:08Z) - Proximal Subgradient Norm Minimization of ISTA and FISTA [8.261388753972234]
反復収縮保持アルゴリズムのクラスに対する2乗近位次数ノルムは逆2乗率で収束することを示す。
また、高速反復収縮保持アルゴリズム (FISTA) のクラスに対する2乗次次数次ノルムが、逆立方レートで収束するように加速されることも示している。
論文 参考訳(メタデータ) (2022-11-03T06:50:19Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
Regression Using Conjugate Gradients [19.772149500352945]
下界の最大化によるモデルパラメータの近似的最大度学習は、スパース変分アプローチの利点の多くを保っていることを示す。
実験では、他の共役グラデーションベースのアプローチと比較して、トレーニング時間の同等の量のためのモデルで予測性能の改善を示します。
論文 参考訳(メタデータ) (2021-02-16T17:54:59Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
我々は、勾配収束法を期待する適応勾配法を証明した。
解析では、非理解勾配境界の最適化において、より適応的な勾配法に光を当てた。
論文 参考訳(メタデータ) (2018-08-16T20:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。