Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors
- URL: http://arxiv.org/abs/2407.08049v1
- Date: Wed, 10 Jul 2024 21:09:09 GMT
- Title: Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors
- Authors: Lei Cheng, Arindam Sengupta, Siyang Cao,
- Abstract summary: Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios.
This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems.
- Score: 6.166992288822812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving holds great promise in addressing traffic safety concerns by leveraging artificial intelligence and sensor technology. Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios. This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems. The proposed method leverages a Bi-directional Long Short-Term Memory network to incorporate long-term temporal information and improve motion prediction. An appearance feature model inspired by FaceNet is used to establish associations between objects across different frames, ensuring consistent tracking. A tri-output mechanism is employed, consisting of individual outputs for radar and camera sensors and a fusion output, to provide robustness against sensor failures and produce accurate tracking results. Through extensive evaluations of real-world datasets, our approach demonstrates remarkable improvements in tracking accuracy, ensuring reliable performance even in low-visibility scenarios.
Related papers
- Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation.
We present a Sensor-Agnostic Graph-Aware Kalman Filter, the first online state estimation technique designed to fuse multi-modal graphs.
We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets.
arXiv Detail & Related papers (2024-11-06T06:58:17Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
This paper presents an approach for tracking surrounding traffic participants with a classical tracking algorithm.
Learning based object detectors have been shown to work adequately on lidar and camera data, while learning based object detectors using standard radar data input have proven to be inferior.
With the improvements to radar sensor technology in the form of imaging radars, the object detection performance on radar was greatly improved but is still limited compared to lidar sensors due to the sparsity of the radar point cloud.
The tracking algorithm must overcome the limited detection quality while generating consistent tracks.
arXiv Detail & Related papers (2024-06-03T05:46:23Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association [8.34219107351442]
This paper proposes a robust camera-LiDAR fusion-based MOT method that achieves a good trade-off between accuracy and speed.
Our proposed method presents obvious advantages over the state-of-the-art MOT methods in terms of both tracking accuracy and processing speed.
arXiv Detail & Related papers (2022-02-24T13:36:29Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems [1.6037469030022993]
Confidence-Triggered Detection (CTD) is an innovative approach that strategically bypasses object detection for frames closely resembling intermediate states.
CTD not only enhances tracking speed but also preserves accuracy, surpassing existing tracking algorithms.
Our experiments underscore the robustness and versatility of the CTD framework, demonstrating its potential to enable real-time tracking in resource-constrained environments.
arXiv Detail & Related papers (2019-02-02T01:52:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.